Self-Supervised Learning across the Spectrum

被引:0
|
作者
Shenoy, Jayanth [1 ]
Zhang, Xingjian Davis [1 ]
Tao, Bill [1 ]
Mehrotra, Shlok [1 ]
Yang, Rem [1 ]
Zhao, Han [1 ]
Vasisht, Deepak [1 ]
机构
[1] Univ Illinois, Champaign, IL 61801 USA
基金
美国国家科学基金会;
关键词
SITS; foundational models; self-supervised learning; multimodal; CLOUD REMOVAL;
D O I
10.3390/rs16183470
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Satellite image time series (SITS) segmentation is crucial for many applications, like environmental monitoring, land cover mapping, and agricultural crop type classification. However, training models for SITS segmentation remains a challenging task due to the lack of abundant training data, which requires fine-grained annotation. We propose S4, a new self-supervised pretraining approach that significantly reduces the requirement for labeled training data by utilizing two key insights of satellite imagery: (a) Satellites capture images in different parts of the spectrum, such as radio frequencies and visible frequencies. (b) Satellite imagery is geo-registered, allowing for fine-grained spatial alignment. We use these insights to formulate pretraining tasks in S4. To the best of our knowledge, S4 is the first multimodal and temporal approach for SITS segmentation. S4's novelty stems from leveraging multiple properties required for SITS self-supervision: (1) multiple modalities, (2) temporal information, and (3) pixel-level feature extraction. We also curate m2s2-SITS, a large-scale dataset of unlabeled, spatially aligned, multimodal, and geographic-specific SITS that serves as representative pretraining data for S4. Finally, we evaluate S4 on multiple SITS segmentation datasets and demonstrate its efficacy against competing baselines while using limited labeled data. Through a series of extensive comparisons and ablation studies, we demonstrate S4's ability as an effective feature extractor for downstream semantic segmentation.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS
    Zhang, Yongqi
    Zhang, Hui
    Yao, Quanming
    Wan, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 605 - 609
  • [32] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [33] Self-supervised learning in medicine and healthcare
    Krishnan, Rayan
    Rajpurkar, Pranav
    Topol, Eric J.
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) : 1346 - 1352
  • [34] Graph Adversarial Self-Supervised Learning
    Yang, Longqi
    Zhang, Liangliang
    Yang, Wenjing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [35] Biased Self-supervised learning for ASR
    Kreyssig, Florian L.
    Shi, Yangyang
    Guo, Jinxi
    Sari, Leda
    Mohamed, Abdelrahman
    Woodland, Philip C.
    INTERSPEECH 2023, 2023, : 4948 - 4952
  • [36] The Challenges of Continuous Self-Supervised Learning
    Purushwalkam, Senthil
    Morgado, Pedro
    Gupta, Abhinav
    COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 702 - 721
  • [37] Self-Supervised Learning for User Localization
    Dash, Ankan
    Gu, Jingyi
    Wang, Guiling
    Ansari, Nirwan
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 886 - 890
  • [38] Self-supervised hypergraph structure learning
    Li, Mingyuan
    Yang, Yanlin
    Meng, Lei
    Peng, Lu
    Zhao, Haixing
    Ye, Zhonglin
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [39] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [40] Conformal Credal Self-Supervised Learning
    Lienen, Julian
    Demir, Caglar
    Huellermeier, Eyke
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 204, 2023, 204 : 213 - 232