Machine Learning for Technical Debt Identification

被引:0
|
作者
Tsoukalas, Dimitrios [1 ]
Mittas, Nikolaos [2 ]
Chatzigeorgiou, Alexander [1 ]
Kehagias, Dionysios [3 ]
Ampatzoglou, Apostolos [1 ]
Amanatidis, Theodoros [1 ]
Angelis, Lefteris [4 ]
机构
[1] University of Macedonia, Department of Applied Informatics, Thessaloniki,54636, Greece
[2] International Hellenic University, Department of Chemistry, Thessaloniki,57001, Greece
[3] Centre for Research and Technology Hellas, Information Technologies Institute, Thessaloniki,57001, Greece
[4] Aristotle University of Thessaloniki, Computer Science Department, Thessaloniki,54636, Greece
来源
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Benchmark testing - Code - Java - Machine-learning - Metrics/measurement - Quality analysis and evaluations - Radiofrequencies - Software - Support vectors machine - Technical debts
引用
收藏
页码:4892 / 4906
相关论文
共 50 条
  • [21] Technical debt as an indicator of software security risk: a machine learning approach for software development enterprises
    Siavvas, Miltiadis
    Tsoukalas, Dimitrios
    Jankovic, Marija
    Kehagias, Dionysios
    Tzovaras, Dimitrios
    ENTERPRISE INFORMATION SYSTEMS, 2022, 16 (05)
  • [22] A framework for conditional statement technical debt identification and description
    Abdulaziz Alhefdhi
    Hoa Khanh Dam
    Yusuf Sulistyo Nugroho
    Hideaki Hata
    Takashi Ishio
    Aditya Ghose
    Automated Software Engineering, 2022, 29
  • [23] A framework for conditional statement technical debt identification and description
    Alhefdhi, Abdulaziz
    Dam, Hoa Khanh
    Nugroho, Yusuf Sulistyo
    Hata, Hideaki
    Ishio, Takashi
    Ghose, Aditya
    AUTOMATED SOFTWARE ENGINEERING, 2022, 29 (02)
  • [24] Identification and management of technical debt: A systematic mapping study
    Alves, Nicolli S. R.
    Mendes, Thiago S.
    de Mendonca, Manoel G.
    Spinola, Rodrigo O.
    Shull, Forrest
    Seaman, Carolyn
    INFORMATION AND SOFTWARE TECHNOLOGY, 2016, 70 : 100 - 121
  • [25] Technical Debt Forecasting Based on Deep Learning Techniques
    Mathioudaki, Maria
    Tsoukalas, Dimitrios
    Siavvas, Miltiadis
    Kehagias, Dionysios
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT VII, 2021, 12955 : 306 - 322
  • [26] Debt structure instability using machine learning
    Qi, Qianru
    Wang, Jing
    JOURNAL OF FINANCIAL STABILITY, 2021, 57
  • [27] Comparing Multivariate Time Series Analysis and Machine Learning Performance for Technical Debt Prediction: The SQALE Index Case
    Robredo, Mikel
    Saarimaki, Nyyti
    Penaloza, Rafael
    Taibi, Davide
    Lenarduzzi, Valentina
    PROCEEDINGS OF THE 2024 ACM/IEEE INTERNATIONAL CONFERENCE ON TECHNICAL DEBT, TECHDEBT 2024, 2024, : 45 - 46
  • [28] Comparing Multivariate Time Series Analysis and Machine Learning Performance for Technical Debt Prediction: The SQALE Index Case
    Robredo, Mikel
    Saarimäki, Nyyti
    Peñaloza, Rafael
    Taibi, Davide
    Lenarduzzi, Valentina
    Proceedings - 2024 ACM/IEEE International Conference on Technical Debt, TechDebt 2024, : 45 - 46
  • [29] Identification of Architectural Technical Debt: an Analysis Based on Naming Patterns
    Mendoza del Carpio, Paul
    2016 8TH EURO AMERICAN CONFERENCE ON TELEMATICS AND INFORMATION SYSTEMS (EATIS), 2016,
  • [30] A Composed Technical Debt Identification Methodology to Predict Software Vulnerabilities
    Halepmollasi, Rusen
    2020 ACM/IEEE 42ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2020), 2020, : 186 - 189