Machine Learning for Technical Debt Identification

被引:0
|
作者
Tsoukalas, Dimitrios [1 ]
Mittas, Nikolaos [2 ]
Chatzigeorgiou, Alexander [1 ]
Kehagias, Dionysios [3 ]
Ampatzoglou, Apostolos [1 ]
Amanatidis, Theodoros [1 ]
Angelis, Lefteris [4 ]
机构
[1] University of Macedonia, Department of Applied Informatics, Thessaloniki,54636, Greece
[2] International Hellenic University, Department of Chemistry, Thessaloniki,57001, Greece
[3] Centre for Research and Technology Hellas, Information Technologies Institute, Thessaloniki,57001, Greece
[4] Aristotle University of Thessaloniki, Computer Science Department, Thessaloniki,54636, Greece
来源
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Benchmark testing - Code - Java - Machine-learning - Metrics/measurement - Quality analysis and evaluations - Radiofrequencies - Software - Support vectors machine - Technical debts
引用
下载
收藏
页码:4892 / 4906
相关论文
共 50 条
  • [1] Machine Learning for Technical Debt Identification
    Tsoukalas, Dimitrios
    Mittas, Nikolaos
    Chatzigeorgiou, Alexander
    Kehagias, Dionysios
    Ampatzoglou, Apostolos
    Amanatidis, Theodoros
    Angelis, Lefteris
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2022, 48 (12) : 4892 - 4906
  • [2] Machine Learning for Software Technical Debt Detection
    Kachanov, V. V.
    Markov, S. I.
    Tsurkov, V. I.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2023, 62 (04) : 689 - 694
  • [3] Machine Learning for Software Technical Debt Detection
    V. V. Kachanov
    S. I. Markov
    V. I. Tsurkov
    Journal of Computer and Systems Sciences International, 2023, 62 : 689 - 694
  • [4] Hidden Technical Debt in Machine Learning Systems
    Sculley, D.
    Holt, Gary
    Golovin, Daniel
    Davydov, Eugene
    Phillips, Todd
    Ebner, Dietmar
    Chaudhary, Vinay
    Young, Michael
    Crespo, Jean-Francois
    Dennison, Dan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [5] An Empirical Study of Refactorings and Technical Debt in Machine Learning Systems
    Tang, Yiming
    Khatchadourian, Raffi
    Bagherzadeh, Mehdi
    Singh, Rhia
    Stewart, Ajani
    Raja, Anita
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 238 - 250
  • [6] Towards Better Technical Debt Detection with NLP and Machine Learning Methods
    Rantala, Leevi
    2020 ACM/IEEE 42ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2020), 2020, : 242 - 245
  • [7] Empirical Analysis of Hidden Technical Debt Patterns in Machine Learning Software
    Alahdab, Mohannad
    Calikli, Gul
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2019, 2019, 11915 : 195 - 202
  • [8] An Architectural Technical Debt Index Based on Machine Learning and Architectural Smells
    Sas, Darius
    Avgeriou, Paris
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (08) : 4169 - 4195
  • [9] Architectural technical debt: an identification strategy
    Perez, Boris R.
    INGENIERIA Y COMPETITIVIDAD, 2023, 25 (03):
  • [10] On the fault proneness of sonarqube technical debt violations: A comparison of eight machine learning techniques
    Lenarduzzi, Valentina
    Lomio, Francesco
    Taibi, Davide
    Huttunen, Heikki
    arXiv, 2019,