Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3

被引:0
|
作者
Wang, Qiaohui [1 ]
Liu, Lei [1 ]
Zhao, Bojie [1 ]
Zhang, Lei [1 ]
Xiao, Xiao [1 ]
Yan, Hao [1 ]
Xu, Guoli [1 ]
Ma, Lei [1 ]
Liu, Yong [2 ]
机构
[1] College of Electronic Information Engineering, Key Laboratory of Brain-like Neuromorphic Devices and Systems Hebei Province, Hebei University, Baoding,071002, China
[2] School of Electrical and Electronic Engineering, Tianjin University, Tianjin,300072, China
基金
中国国家自然科学基金;
关键词
Ball milling - Lithium compounds - X ray photoelectron spectroscopy - Titanium compounds - Energy dispersive spectroscopy - Aluminum compounds - Scanning electron microscopy - Tellurium compounds - Electrochemical impedance spectroscopy - High resolution transmission electron microscopy - Lithium-ion batteries;
D O I
暂无
中图分类号
学科分类号
摘要
Te-doped NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte materials were prepared by ball milling-assisted solid state method. The structural, morphological, and transport properties of samples were analyzed through X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscope, energy dispersive X-Ray spectroscopy, electrochemical impedance spectroscopy, and DC polarization to determine optimal doping concentration. High total ionic conductivity of 7.03 × 10−4 S cm−1 and negligible electronic conductivity of 7.64 × 10−9 S cm−1 were obtained at room temperature for Li1.3Al0.3Te0.03Ti1.67(PO4)3 electrolyte. Interface characteristics analysis of electrolyte materials with Li electrode showed that voltage profile of Li/Li1.3Al0.3Te0.03Ti1.67(PO4)3/Li cell remained stable after 300 h of cycling with current density of 0.02 mA cm−2. Good cyclic stability at different temperatures was also demonstrated, with doped electrolyte presenting better interface stability than pure LATP. These results suggest that Te-doped LATP materials can be used as alternative solid electrolyte for all solid-state lithium-ion batteries. © 2021
引用
收藏
相关论文
共 50 条
  • [21] The influence of phosphorous source on the properties of NASICON lithiumion conductor Li1.3Al0.3Ti1.7(PO4)3
    Lu, Xiaojuan
    Wang, Rui
    Zhang, Feng
    Li, Jing
    SOLID STATE IONICS, 2020, 354
  • [22] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [23] Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity
    Majid Soweizy
    Mostafa Zahedifar
    Merat Karimi
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 9614 - 9621
  • [24] Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte
    A. V. Deshpande
    Swati G. Bansod
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [25] Foaming suppression during the solid-state synthesis of the Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Shindrov, Alexander A.
    Skachilova, Maria G.
    Gerasimov, Konstantin B.
    Kosova, Nina, V
    SOLID STATE SCIENCES, 2024, 154
  • [26] Isotropic negative thermal expansion of a Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Ghosh, Sayan
    Sudakar, C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (42) : 29271 - 29277
  • [27] Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Rosenberger, Andrew
    Gao, Yu
    Stanciu, Lia
    SOLID STATE IONICS, 2015, 278 : 217 - 221
  • [28] Preparation of powders and films of the lithium ion conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3
    G. B. Kunshina
    O. G. Gromov
    E. P. Lokshin
    V. T. Kalinnikov
    Inorganic Materials, 2013, 49 : 95 - 100
  • [29] In situ electrochemical modification of the Li/Li1.3Al0.3Ti1.7(PO4)3 interface in solid lithium metal batteries via an electrolyte additive
    Xu, Yadong
    Tian, Meng
    Rong, Yi
    Lu, Chengyi
    Lu, Zhengyi
    Shi, Ruhua
    Gu, Tianyi
    Zhang, Qian
    Jin, Chengchang
    Yang, Ruizhi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 396 - 403
  • [30] DC CONDUCTIVITY OF LI1.3AL0.3TI1.7(PO4)3 CERAMIC WITH LI ELECTRODES
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, G
    CHEMISTRY LETTERS, 1991, (09) : 1567 - 1570