Efficient seismic sparse decomposition based on multiple kernel-based models

被引:0
|
作者
School of Mathematics and Physics, China University of Geosciences , Wuhan [1 ]
Hubei
430074, China
不详 [2 ]
Hubei
430079, China
不详 [3 ]
Hubei
430073, China
机构
来源
Shiyou Diqiu Wuli Kantan | / 3卷 / 444-450期
关键词
D O I
10.13810/j.cnki.issn.1000-7210.2015.03.009
中图分类号
学科分类号
摘要
To enhance the efficiency and sparsity of seismic signal decomposition, multiple kernels are used for the adaptive sparse decomposition of seismic signals. At first, the global k-means clustering algorithm is utilized to generate the preselected behavioral parameters in the dictionary. Then the signal is reconstructed with orthogonal least squares method. The experiments both on synthetic and real data were conducted to evaluate the performance. The results show that multiple kernel-based models greatly improve the sparsity with the similar accuracy. ©, 2015, Science Press. All right reserved.
引用
收藏
相关论文
共 50 条
  • [41] Kernel-based estimation of the applicability domain of QSAR models
    Nikolas Fechner
    Georg Hinselmann
    A Jahn
    A Zell
    [J]. Journal of Cheminformatics, 2 (Suppl 1)
  • [42] Kernel-based models for prediction of cement compressive strength
    Mohit Verma
    A. Thirumalaiselvi
    J. Rajasankar
    [J]. Neural Computing and Applications, 2017, 28 : 1083 - 1100
  • [43] Kernel-Based Machine Learning with Multiple Sources of Information
    Kloft, Marius
    [J]. IT-INFORMATION TECHNOLOGY, 2013, 55 (02): : 76 - 80
  • [44] Exploring multiple communities with kernel-based link analysis
    Ito, Takahiko
    Shimbo, Masashi
    Mochihashi, Daichi
    Matsumoto, Yuji
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2006, PROCEEDINGS, 2006, 4213 : 235 - 246
  • [45] Kernel-based multiple criteria linear programming classifier
    Zhang, Zhan
    Zhang, Dongling
    Tian, Yingjie
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 2401 - 2409
  • [46] Kernel-Based Adaptive Multiple Model Target Tracking
    Ghoshal, Debarshi Patanjali
    Gopalakrishnan, Kumar
    Michalska, Hannah
    [J]. 2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1338 - 1343
  • [47] System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques
    Chen, Tianshi
    Andersen, Martin S.
    Ljung, Lennart
    Chiuso, Alessandro
    Pillonetto, Gianluigi
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) : 2933 - 2945
  • [48] Kernel-based SPS
    Pillonetto, Gianluigi
    Care, Algo
    Campi, Marco C.
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 31 - 36
  • [49] Kernel-based clustering
    Piciarelli, C.
    Micheloni, C.
    Foresti, G. L.
    [J]. ELECTRONICS LETTERS, 2013, 49 (02) : 113 - U7
  • [50] Sparse Kernel-Based Least Squares Temporal Difference with Prioritized Sweeping
    Sun, Cijia
    Ling, Xinghong
    Fu, Yuchen
    Liu, Quan
    Zhu, Haijun
    Zhai, Jianwei
    Zhang, Peng
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 221 - 230