Efficient seismic sparse decomposition based on multiple kernel-based models

被引:0
|
作者
School of Mathematics and Physics, China University of Geosciences , Wuhan [1 ]
Hubei
430074, China
不详 [2 ]
Hubei
430079, China
不详 [3 ]
Hubei
430073, China
机构
来源
Shiyou Diqiu Wuli Kantan | / 3卷 / 444-450期
关键词
D O I
10.13810/j.cnki.issn.1000-7210.2015.03.009
中图分类号
学科分类号
摘要
To enhance the efficiency and sparsity of seismic signal decomposition, multiple kernels are used for the adaptive sparse decomposition of seismic signals. At first, the global k-means clustering algorithm is utilized to generate the preselected behavioral parameters in the dictionary. Then the signal is reconstructed with orthogonal least squares method. The experiments both on synthetic and real data were conducted to evaluate the performance. The results show that multiple kernel-based models greatly improve the sparsity with the similar accuracy. ©, 2015, Science Press. All right reserved.
引用
收藏
相关论文
共 50 条
  • [1] Learning sparse conditional distribution: An efficient kernel-based approach
    Chen, Fang
    He, Xin
    Wang, Junhui
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1610 - 1635
  • [2] Sparse kernel-based feature weighting
    Yang, Shuang-Hong
    Yang, Yu-Jiu
    Hu, Bao-Gang
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 813 - 820
  • [3] MULTILEVEL SPARSE KERNEL-BASED INTERPOLATION
    Georgoulis, Emmanuil H.
    Levesley, Jeremy
    Subhan, Fazli
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02): : A815 - A831
  • [4] Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models
    Singh, Rishabh
    Principe, Jose C.
    [J]. NEURAL COMPUTATION, 2021, 33 (05) : 1164 - 1198
  • [5] Data-efficient Neuroevolution with Kernel-Based Surrogate Models
    Gaier, Adam
    Asteroth, Alexander
    Mouret, Jean-Baptiste
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 85 - 92
  • [6] Sparse Kernel-Based Hyperspectral Anomaly Detection
    Gurram, Prudhvi
    Kwon, Heesung
    Han, Timothy
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (05) : 943 - 947
  • [7] Kernel-based sparse representation for gesture recognition
    Zhou, Yin
    Liu, Kai
    Carrillo, Rafael E.
    Barner, Kenneth E.
    Kiamilev, Fouad
    [J]. PATTERN RECOGNITION, 2013, 46 (12) : 3208 - 3222
  • [8] Anomaly detection in homogenous populations: a sparse multiple kernel-based regularization method
    Chen, Tianshi
    Andersen, Martin S.
    Chiuso, Alessandro
    Pillonetto, Gianluigi
    Ljung, Lennart
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 265 - 270
  • [9] A Novel multiple kernel-based dictionary learning for distributive and collective sparse representation based classifiers
    Zare, Tahereh
    Sadeghi, Mohammad Taghi
    [J]. NEUROCOMPUTING, 2017, 234 : 164 - 173
  • [10] Efficient kernel-based learning for trees
    Aiolli, Fabio
    Martino, Giovanni Da San
    Sperduti, Alessandro
    Moschitti, Alessandro
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 308 - 315