Addressing the non-perturbative regime of the quantum anharmonic oscillator by physics-informed neural networks

被引:1
|
作者
Brevi, Lorenzo [1 ]
Mandarino, Antonio [1 ]
Prati, Enrico [1 ]
机构
[1] Univ Milan, Dept Phys Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 10期
关键词
physics-informed neural networ; quantum anharmonic oscillator; deep learning for nonintegrable systems; PERTURBATION-THEORY; NOBEL LECTURE; ENERGY-LEVELS; MECHANICS; ORDER;
D O I
10.1088/1367-2630/ad8302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The use of deep learning in physical sciences has recently boosted the ability of researchers to tackle physical systems where little or no analytical insight is available. Recently, the Physics-Informed Neural Networks (PINNs) have been introduced as one of the most promising tools to solve systems of differential equations guided by some physically grounded constraints. In the quantum realm, such an approach paves the way to a novel approach to solve the Schr & ouml;dinger equation for non-integrable systems. By following an unsupervised learning approach, we apply the PINNs to the anharmonic oscillator in which an interaction term proportional to the fourth power of the position coordinate is present. We compute the eigenenergies and the corresponding eigenfunctions while varying the weight of the quartic interaction. We bridge our solutions to the regime where both the perturbative and the strong coupling theory work, including the pure quartic oscillator. We investigate systems with real and imaginary frequency, laying the foundation for novel numerical methods to tackle problems emerging in quantum field theory.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [2] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [3] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [4] Non-perturbative energy expressions for the generalized anharmonic oscillator
    Sharma, L.K.
    Fiase, J.O.
    European Journal of Physics, 2000, 21 (02) : 167 - 174
  • [5] General implementation of quantum physics-informed neural networks
    Vadyala, Shashank Reddy
    Betgeri, Sai Nethra
    ARRAY, 2023, 18
  • [6] Physics-Informed Neural Networks for Quantum Eigenvalue Problems
    Jin, Henry
    Mattheakis, Marios
    Protopapas, Pavlos
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Physics-informed neural networks for an optimal counterdiabatic quantum computation
    Ferrer-Sanchez, Antonio
    Flores-Garrigos, Carlos
    Hernani-Morales, Carlos
    Orquin-Marques, Jose J.
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Montalban, Iraitz
    Solano, Enrique
    Vives-Gilabert, Yolanda
    Martin-Guerrero, Jose D.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [8] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [9] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601