GWPF: Communication-efficient federated learning with Gradient-Wise Parameter Freezing

被引:0
|
作者
Yang, Duo [1 ]
Gao, Yunqi [1 ]
Hu, Bing [1 ]
Jin, A-Long [2 ]
Wang, Wei [1 ]
You, Yang [3 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Univ Hong Kong, Hong Kong, Peoples R China
[3] Natl Univ Singapore, Singapore, Singapore
关键词
Federated learning; Communication mitigation; Parameter freezing; Frozen period; Thawing strategy;
D O I
10.1016/j.comnet.2024.110886
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Communication bottleneck is a critical challenge in federated learning. While parameter freezing has emerged as a popular approach, utilizing fine-grained parameters as aggregation objects, existing methods suffer from issues such as a lack of thawing strategy, lag and inflexibility in the thawing process, and underutilization of frozen parameters' updates. To address these challenges, we propose Gradient-Wise Parameter Freezing (GWPF), a mechanism that wisely controls frozen periods for different parameters through parameter freezing and thawing strategies. GWPF globally freezes parameters with insignificant gradients and excludes frozen parameters from global updates during the frozen period, reducing communication overhead and accelerating training. The thawing strategy, based on global decisions by the server and collaboration with clients, leverages real-time feedback on the locally accumulated gradients of frozen parameters in each round, achieving a balanced approach between mitigating communication and enhancing model accuracy. We provide theoretical analysis and a convergence guarantee for non-convex objectives. Extensive experiments confirm that our mechanism achieves a speedup of up to 4.52 times in time-to-accuracy performance and reduces communication overhead by up to 48.73%. It also improves final model accuracy by up to 2.01% compared to the existing fastest method APF.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Federated Learning with Autotuned Communication-Efficient Secure Aggregation
    Bonawitz, Keith
    Salehi, Fariborz
    Konecny, Jakub
    McMahan, Brendan
    Gruteser, Marco
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1222 - 1226
  • [22] ALS Algorithm for Robust and Communication-Efficient Federated Learning
    Hurley, Neil
    Duriakova, Erika
    Geraci, James
    O'Reilly-Morgan, Diarmuid
    Tragos, Elias
    Smyth, Barry
    Lawlor, Aonghus
    PROCEEDINGS OF THE 2024 4TH WORKSHOP ON MACHINE LEARNING AND SYSTEMS, EUROMLSYS 2024, 2024, : 56 - 64
  • [23] Communication-efficient federated learning via knowledge distillation
    Wu, Chuhan
    Wu, Fangzhao
    Lyu, Lingjuan
    Huang, Yongfeng
    Xie, Xing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [24] Communication-Efficient Federated Learning For Massive MIMO Systems
    Mu, Yuchen
    Garg, Navneet
    Ratnarajah, Tharmalingam
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 578 - 583
  • [25] On the Design of Communication-Efficient Federated Learning for Health Monitoring
    Chu, Dong
    Jaafar, Wael
    Yanikomeroglu, Halim
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1128 - 1133
  • [26] Communication-Efficient Design for Quantized Decentralized Federated Learning
    Chen, Li
    Liu, Wei
    Chen, Yunfei
    Wang, Weidong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1175 - 1188
  • [27] FedHe: Heterogeneous Models and Communication-Efficient Federated Learning
    Chan, Yun Hin
    Ngai, Edith C. H.
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 207 - 214
  • [28] FedADP: Communication-Efficient by Model Pruning for Federated Learning
    Liu, Haiyang
    Shi, Yuliang
    Su, Zhiyuan
    Zhang, Kun
    Wang, Xinjun
    Yan, Zhongmin
    Kong, Fanyu
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3093 - 3098
  • [29] Communication-Efficient Robust Federated Learning with Noisy Labels
    Li, Junyi
    Pei, Jian
    Huang, Heng
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 914 - 924
  • [30] Communication-Efficient Federated Learning With Data and Client Heterogeneity
    Zakerinia, Hossein
    Talaei, Shayan
    Nadiradze, Giorgi
    Alistarh, Dan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238