Chunking Japanese Compound Functional Expressions by Machine Learning

被引:0
|
作者
Computer Center, Toyohashi University of Technology, Tenpaku-cho, Toyohashi [1 ]
441-8580, Japan
不详 [2 ]
441-8580, Japan
不详 [3 ]
606-8501, Japan
不详 [4 ]
305-8573, Japan
不详 [5 ]
619-0289, Japan
不详 [6 ]
464-8603, Japan
机构
来源
关键词
Compendex;
D O I
2006 Workshop on Multi-Word-Expressions in a Multilingual Context, MWE 2006
中图分类号
学科分类号
摘要
Computational linguistics - Semantics - Support vector machines - Syntactics
引用
收藏
相关论文
共 50 条
  • [31] Studies on Japanese expressions including English expressions
    Murata, Masaki
    Kanamaru, Toshiyuki
    Nakamoto, Koichiro
    Kotani, Katsunori
    Isahara, Hitoshi
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (03): : 363 - 376
  • [32] Analyzing Variations of Everyday Japanese Conversations Based on Semantic Labels of Functional Expressions
    Chiba, Yuya
    Higashinaka, Ryuichiro
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (02)
  • [33] Analyzing Variations of Everyday Japanese Conversations Based on Semantic Labels of Functional Expressions
    Chiba, Yuya
    Higashinaka, Ryuichiro
    ACM Transactions on Asian and Low-Resource Language Information Processing, 2023, 22 (02):
  • [34] Machine learning for functional protein design
    Notin, Pascal
    Rollins, Nathan
    Gal, Yarin
    Sander, Chris
    Marks, Debora
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 216 - 228
  • [35] Machine learning for functional protein design
    Pascal Notin
    Nathan Rollins
    Yarin Gal
    Chris Sander
    Debora Marks
    Nature Biotechnology, 2024, 42 : 216 - 228
  • [36] Machine learning and density functional theory
    Ryan Pederson
    Bhupalee Kalita
    Kieron Burke
    Nature Reviews Physics, 2022, 4 : 357 - 358
  • [37] Machine learning and density functional theory
    Pederson, Ryan
    Kalita, Bhupalee
    Burke, Kieron
    NATURE REVIEWS PHYSICS, 2022, 4 (06) : 357 - 358
  • [38] Prediction of Compound Profiling Matrices Using Machine Learning
    Rodriguez-Perez, Raquel
    Miyao, Tomoyuki
    Jasial, Swarit
    Vogt, Martin
    Bajorath, Juergen
    ACS OMEGA, 2018, 3 (04): : 4713 - 4723
  • [39] Machine learning approach for discharge estimation in compound channels
    Adhikari A.
    Patra K.C.
    Adhikari N.
    ISH Journal of Hydraulic Engineering, 2021, 27 (01) : 100 - 109
  • [40] Feasibility of Active Machine Learning for Multiclass Compound Classification
    Lang, Tobias
    Flachsenberg, Florian
    von Luxburg, Ulrike
    Rarey, Matthias
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (01) : 12 - 20