Building blocks for variational Bayesian learning of latent variable models

被引:0
|
作者
Raiko, Tapani [1 ]
Valpola, Harri [1 ]
Harva, Markus [1 ]
Karhunen, Juha [1 ]
机构
[1] Adaptive Informatics Research Centre, Helsinki University of Technology, P.O.Box 5400, FI-02015 HUT, Espoo, Finland
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:155 / 201
相关论文
共 50 条
  • [31] Tensor decompositions for learning latent variable models
    Electrical Engineering and Computer Science, University of California, Irvine, 2200 Engineering Hall, Irvine
    CA
    92697, United States
    不详
    MA
    02142, United States
    不详
    NY
    10027, United States
    不详
    NJ
    08854, United States
    J. Mach. Learn. Res., (2773-2832):
  • [32] Bayesian estimation of single and multilevel models with latent variable interactions
    Asparouhov, Tihomir
    Muthen, Bengt
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (02) : 314 - 328
  • [33] Semiparametric Latent Variable Models With Bayesian P-Splines
    Song, Xin-Yuan
    Lu, Zhao-Hua
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (03) : 590 - 608
  • [34] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381
  • [35] Bayesian latent variable models for the analysis of experimental psychology data
    Edgar C. Merkle
    Ting Wang
    Psychonomic Bulletin & Review, 2018, 25 : 256 - 270
  • [36] Bayesian Filtering with Online Gaussian Process Latent Variable Models
    Wang, Yali
    Brubaker, Marcus A.
    Chaib-draa, Brahim
    Urtasun, Raquel
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 849 - 857
  • [37] Bayesian latent variable models for the analysis of experimental psychology data
    Merkle, Edgar C.
    Wang, Ting
    PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 256 - 270
  • [38] A VARIATIONAL BAYESIAN APPROACH TO LEARNING LATENT VARIABLES FOR ACOUSTIC KNOWLEDGE TRANSFER
    Hu, Hu
    Siniscalchi, Sabato Marco
    Yang, Chao-Han Huck
    Lee, Chin-Hui
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1041 - 1045
  • [39] Bayesian Manifold Learning: The Locally Linear Latent Variable Model
    Park, Mijung
    Jitkrittum, Wittawat
    Qamar, Ahmad
    Szabo, Zoltan
    Buesing, Lars
    Sahani, Maneesh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [40] ShapeOdds: Variational Bayesian Learning of Generative Shape Models
    Elhabian, Shireen
    Whitaker, Ross
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2185 - 2196