Model for predicting drug resistance based on the clinical profile of tuberculosis patients using machine learning techniques

被引:0
|
作者
Falcao, Igor Wenner Silva [1 ]
Cardoso, Diego Lisboa [1 ]
dos Santos Santos, Albert Einstein Coutinho [1 ]
Paixao, Erminio [1 ]
Costa, Fernando Augusto R. [2 ]
Figueiredo, Karla [3 ]
Carneiro, Saul [4 ]
da Rocha Seruffo, Marcos César [1 ]
机构
[1] Institute of Technology, Federal University of Para, PA, Belém, Brazil
[2] Center for Higher Amazon Studies, Federal University of Para, PA, Belém, Brazil
[3] Computer Science, State University of Rio de Janeiro, RJ, Rio de Janeiro, Brazil
[4] João de Barros Barreto University Hospital, Federal University of Para, PA, Belém, Brazil
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
10.7717/PEERJ-CS.2246
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Predicting Students' Emotions Using Machine Learning Techniques
    Altrabsheh, Nabeela
    Cocea, Mihaela
    Fallahkhair, Sanaz
    ARTIFICIAL INTELLIGENCE IN EDUCATION, AIED 2015, 2015, 9112 : 537 - 540
  • [42] Predicting Software Anomalies using Machine Learning Techniques
    Alonso, Javier
    Belanche, Lluis
    Avresky, Dimiter R.
    2011 10TH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2011,
  • [43] Predicting Power Consumption Using Machine Learning Techniques
    Allal, Zaid
    Noura, Hassan
    Salman, Ola
    Vernier, Flavien
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1522 - 1527
  • [44] Predicting Patent Transactions Using Patent-Based Machine Learning Techniques
    Kim, Mirae
    Geum, Youngjung
    IEEE ACCESS, 2020, 8 : 188833 - 188843
  • [45] Interpretable machine learning in predicting drug-induced liver injury among tuberculosis patients: model development and validation study
    Xiao, Yue
    Chen, Yanfei
    Huang, Ruijian
    Jiang, Feng
    Zhou, Jifang
    Yang, Tianchi
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [46] MEWS plus plus : PREDICTING CLINICAL DETERIORATION IN ADMITTED PATIENTS USING A NOVEL MACHINE LEARNING MODEL
    Gupta, Rohit
    Kia, Arash
    Klang, Eyal
    Freeman, Robert
    Timsina, Prem
    Mazumdar, Madhu
    Reich, David
    Tomlinson, Max
    Dudley, Joel
    Kohli-Seth, Roopa
    Levin, Matthew
    CRITICAL CARE MEDICINE, 2020, 48
  • [47] Predicting students' performance in distance learning using machine learning techniques
    Kotsiantis, S
    Pierrakeas, C
    Pintelas, P
    APPLIED ARTIFICIAL INTELLIGENCE, 2004, 18 (05) : 411 - 426
  • [48] Using machine learning techniques to predict antimicrobial resistance in stone disease patients
    Lazaros Tzelves
    Lazaros Lazarou
    Georgios Feretzakis
    Dimitris Kalles
    Panagiotis Mourmouris
    Evangelos Loupelis
    Spyridon Basourakos
    Marinos Berdempes
    Ioannis Manolitsis
    Iraklis Mitsogiannis
    Andreas Skolarikos
    Ioannis Varkarakis
    World Journal of Urology, 2022, 40 : 1731 - 1736
  • [49] Using machine learning techniques to predict antimicrobial resistance in stone disease patients
    Tzelves, Lazaros
    Lazarou, Lazaros
    Feretzakis, Georgios
    Kalles, Dimitris
    Mourmouris, Panagiotis
    Loupelis, Evangelos
    Basourakos, Spyridon
    Berdempes, Marinos
    Manolitsis, Ioannis
    Mitsogiannis, Iraklis
    Skolarikos, Andreas
    Varkarakis, Ioannis
    WORLD JOURNAL OF UROLOGY, 2022, 40 (07) : 1731 - 1736
  • [50] Predicting quetiapine dose in patients with depression using machine learning techniques based on real-world evidence
    Yupei Hao
    Jinyuan Zhang
    Jing Yu
    Ze Yu
    Lin Yang
    Xin Hao
    Fei Gao
    Chunhua Zhou
    Annals of General Psychiatry, 23