Slow electron-phonon relaxation controls the dynamics of the superconducting resistive transition

被引:0
|
作者
Baeva, E. M. [1 ,2 ]
Kolbatova, A. I. [1 ,3 ]
Titova, N. A. [1 ]
Saha, S. [4 ,5 ]
Boltasseva, A. [4 ,5 ]
Bogdanov, S. [6 ,7 ,8 ]
Shalaev, V. M. [4 ,5 ]
Semenov, A., V [1 ,9 ]
Levchenko, A. [10 ]
Goltsman, G. N. [2 ,11 ]
Khrapai, V. S. [2 ,12 ]
机构
[1] Moscow Pedag State Univ, Moscow 119435, Russia
[2] Natl Res Univ, Higher Sch Econ, 20 Myasnitskaya St, Moscow 101000, Russia
[3] Univ Sci & Technol MISIS, Lab Photon Gas Sensors, Moscow 119049, Russia
[4] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[5] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[6] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[7] Univ Illinois Urbana Champaign UIUC, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[8] Univ Illinois, Illinois Quantum Informat Sci & Technol Ctr, Urbana, IL 61801 USA
[9] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[10] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
[11] Russian Quantum Ctr, Moscow 121205, Russia
[12] Russian Acad Sci, Osipyan Inst Solid State Phys, Chernogolovka 142432, Russia
关键词
THERMAL FLUCTUATION NOISE; SLIP SHOT-NOISE; EXCESS NOISE; TITANIUM NITRIDE; VOLTAGE NOISE; IN-DIFFUSION; FLUX-FLOW; TEMPERATURE; RESISTANCE; DIRTY;
D O I
10.1103/PhysRevB.110.104519
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the temporal and spatial scales of resistance fluctuations (R fluctuations) at the superconducting resistive transition accessed through voltage fluctuation measurements in thin epitaxial TiN films. This material is characterized by slow electron-phonon relaxation, which puts it far beyond the applicability range of the textbook scenario of superconducting fluctuations. The measured Lorentzian spectrum of the R fluctuations identifies their correlation time, which is nearly constant across the transition region and has no relation to the conventional Ginzburg-Landau timescale. Instead, the correlation time coincides with the energy relaxation time determined by a combination of the electron-phonon relaxation and the relaxation via diffusion into reservoirs. Our data are quantitatively consistent with the model of spontaneous temperature fluctuations and highlight the lack of understanding of the resistive transition in materials with slow electron-phonon relaxation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Lattice dynamics and electron-phonon coupling in transition-metal diborides
    Heid, R
    Renker, B
    Schober, H
    Adelmann, P
    Ernst, D
    Bohnen, KP
    PHYSICAL REVIEW B, 2003, 67 (18)
  • [22] ELECTRON-PHONON INTERACTIONS IN TRANSITION METALS
    HARRISON, A
    PHYSICA, 1971, 55 (NOCT): : 696 - &
  • [23] ELECTRON-PHONON INTERACTION IN TRANSITION METALS
    DEEGAN, RA
    PHYSICAL REVIEW B, 1971, 4 (04): : 1389 - &
  • [24] ELECTRON-PHONON INTERACTIONS IN TRANSITION METALS
    LEGGETT, AJ
    PROGRESS OF THEORETICAL PHYSICS, 1966, 36 (05): : 931 - &
  • [25] Electron-phonon relaxation in a model of a granular film
    Stepanov, Nikolai A.
    Skvortsov, Mikhail A.
    PHYSICAL REVIEW B, 2023, 108 (20)
  • [26] Electron-phonon interaction and relaxation time in graphite
    Jiang, J
    Saito, R
    Grüneis, A
    Dresselhaus, G
    Dresselhaus, MS
    CHEMICAL PHYSICS LETTERS, 2004, 392 (4-6) : 383 - 389
  • [27] ELECTRON-PHONON RELAXATION-TIME IN MERCURY
    DATARS, WR
    CHOH, SH
    PHYSICS OF CONDENSED MATTER, 1975, 19 (1-4): : 87 - 93
  • [28] Electron-phonon relaxation in graphene quantum dots
    Jaeger, Heather
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [29] The effect of phonon focusing on the electron-phonon relaxation and electron transport in potassium crystals
    Kuleyev, I. G.
    Kuleyev, I. I.
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 886 - 895
  • [30] Phonon dynamics and electron-phonon coupling in pristine picene
    Girlando, Alberto
    Masino, Matteo
    Bilotti, Ivano
    Brillante, Aldo
    Della Valle, Raffaele G.
    Venuti, Elisabetta
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (05) : 1694 - 1699