Challenges for mesoscale climatology execution on experimental grid computing systems

被引:0
|
作者
Almeida, Eugenio Sper de [1 ]
Campos Velho, Haroldo Fraga de [2 ]
Preto, Airam Jonatas [3 ]
机构
[1] Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), Instituto Nacional de Pesquisas Espaciais (INPE), Rod. Pres. Dutra, Km 39, Cachoeira Paulista, SP, Brazil
[2] Laboratório Associado de Computação e Matemática Aplicada (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758 São José dos Campos, SP, Brazil
[3] Serviço Corporativo de Tecnologia da Informação (STI), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758 São José dos Campos, SP, Brazil
关键词
Data transfer - Digital storage - Climatology;
D O I
10.1007/s13173-013-0099-5
中图分类号
学科分类号
摘要
This paper discusses the challenges of executing a long-term application on a computational grid, which generates the climatology of the atmospheric numerical model BRAMS (Brazilian development on Regional Atmospheric Modeling System) using ensemble members. We have developed a workflow that submits climatology to the computational grid composed by three different grid middlewares (OurGrid, OAR/CiGri and Globus) and three clusters (situated in Porto Alegre, São José dos Campos and Cachoeira Paulista-Brazil). The application characteristics demand a processing grid, rather than a data grid, due to intensive computation and data transfer between the geographically distributed grid nodes. We achieved the goal of generating the climatology using a computational grid. However, we observed problems on application performance due data transfer and non-availability of the computational grid. Questions related to data storage/transfer and grid failures must be better treated to ensure application performance. © 2013 The Brazilian Computer Society.
引用
收藏
页码:279 / 290
相关论文
共 50 条
  • [31] Integrating trust in grid computing systems
    Lai, WWK
    Ng, KW
    Lyu, MR
    GRID AND COOPERATIVE COMPUTING GCC 2004, PROCEEDINGS, 2004, 3251 : 887 - 890
  • [32] Workflow Management Systems for Grid Computing
    Bratosin, Carmen
    van der Aalst, Wil
    ERCIM NEWS, 2007, (70): : 21 - 22
  • [33] Global file systems and grid computing
    Andrews, P
    LOCAL TO GLOBAL DATA INTEROPERABILITY - CHALLENGES AND TECHNOLOGIES: BEYOND MASS STORAGE TO GLOBALLY DISTRIBUTED DATA, 2005, : 24 - 30
  • [34] ON THE EXECUTION OF LARGE BATCH PROGRAMS IN UNRELIABLE COMPUTING SYSTEMS
    LEUNG, CHC
    CHOO, QH
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1984, 10 (04) : 444 - 450
  • [35] Performance Models for Split-execution Computing Systems
    Humble, Travis S.
    McCaskey, Alexander J.
    Schrock, Jonathan
    Seddiqi, Hadayat
    Britt, Keith A.
    Imam, Neena
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 545 - 554
  • [36] Contractual and regulatory compliance challenges in grid computing environments
    Kesler, JC
    2005 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING, VOL 1, PROCEEDINGS, 2005, : 61 - 68
  • [37] Computational Challenges on Grid Computing for Workflows Applied to Phylogeny
    Isea, Raul
    Montes, Esther
    Rubio-Montero, Antonio J.
    Mayo, Rafael
    DISTRIBUTED COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS, SOFT COMPUTING, AND AMBIENT ASSISTED LIVING, PT II, PROCEEDINGS, 2009, 5518 : 1130 - +
  • [38] A warm season climatology of mesoscale convective systems in the Mediterranean basin using satellite data
    Stavros Kolios
    Haralambos Feidas
    Theoretical and Applied Climatology, 2010, 102 : 29 - 42
  • [39] Distributed application execution in fog computing: A taxonomy, challenges and future directions
    Ashraf, Maria
    Shiraz, Muhammad
    Abbasi, Almas
    Albahli, Saleh
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (07) : 3887 - 3909
  • [40] Deploying the LHC computing Grid - The LCG service challenges
    Bird, I
    Robertson, L
    Shiers, J
    Local to Global Data Interoperability - Challenges and Technologies: BEYOND MASS STORAGE TO GLOBALLY DISTRIBUTED DATA, 2005, : 160 - 165