A method to calculate the spherical multipole expansion of the electrostatic charge distribution on a triangular boundary element

被引:0
|
作者
Barrett, John [1 ]
Formaggio, Joseph [1 ]
Corona, Thomas [2 ]
机构
[1] Massachusetts Institute of Technology, MA, United States
[2] University of North Carolina at Chapel Hill, NC, United States
来源
关键词
D O I
10.2528/PIERB15061904
中图分类号
学科分类号
摘要
引用
收藏
页码:123 / 143
相关论文
共 50 条
  • [21] The hybrid boundary node method accelerated by the fast multipole expansion
    Zhang, JM
    Tanaka, M
    Computational Mechanics, Proceedings, 2004, : 770 - 775
  • [22] Drift forces on a floating or submerged spherical structure by multipole expansion method
    Rahman, M
    ADVANCES IN FLUID MECHANICS IV, 2002, : 473 - 481
  • [23] Parallelization of the inverse fast multipole method with an application to boundary element method
    Takahashi, Toru
    Chen, Chao
    Darve, Eric
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 247
  • [24] Parallel Fast Multipole Boundary Element Method for Crustal Dynamics
    Quevedo, Leonardo
    Morra, Gabriele
    Mueller, R. Dietmar
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10
  • [25] A multipole based Boundary Element Method for moving boundary problems in axisymmetric geometry
    Singh, J.
    Gliere, A.
    Achard, J. -L.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXX, 2008, 47 : 43 - 52
  • [26] A fast multipole boundary element method for a modified hypersingular boundary integral equation
    Of, G
    Steinbach, O
    ANALYSIS AND SIMULATION OF MULTIFIELD PROBLEMS, 2003, 12 : 163 - 169
  • [27] A new adaptive algorithm for the fast multipole boundary element method
    Bapat, M.S.
    Liu, Y.J.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (02): : 161 - 183
  • [28] A New Adaptive Algorithm for the Fast Multipole Boundary Element Method
    Bapat, M. S.
    Liu, Y. J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 161 - 183
  • [29] Preconditioned fast adaptive multipole boundary-element method
    Buchau, A
    Rucker, WM
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 461 - 464
  • [30] The fast multipole boundary element method for potential problems: A tutorial
    Liu, Y. J.
    Nishimura, N.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (05) : 371 - 381