Thermopile-structured micro thermal conductivity vacuum sensor

被引:0
|
作者
Ma, Bin [1 ]
Liang, Pingzhi [1 ]
Chen, Shijun [1 ]
Cheng, Zhengxi [1 ]
机构
[1] Shanghai Institute of Technical Physics, Chinese Acad. of Sci., Shanghai 200083, China
关键词
Metals - Vacuum gages - Thermoelectricity - MOS devices - Oxide semiconductors - Thermocouples - CMOS integrated circuits - Polysilicon - Polycrystalline materials - Thermal conductivity - MEMS;
D O I
暂无
中图分类号
学科分类号
摘要
A novel type of micro-thermal conductivity vacuum sensor has been developed, on the basis of the thermopile structure, and fabricated with commercially standardized complementary metal oxide semiconductor (CMOS) processes. The device consists of the composite sensing multi-layers, 124μm×100μm, in the form of a micro-bridge suspended over the cavity etched on the silicon substrate, a n-type poly-silicon heater, and a thermopile made up of 20 pairs of poly-silicon-aluminum thermocouples. The discussions focused on the following: i) the design and fabrication process; ii) the finite element analysis (FEA) of the steady and transient states of the device; and iii) comparison of the experimental and theoretical results. When resistively heated at 1.5 V the experimental results show the pressure sensing ranges from 0.1 Pa to 105 Pa (of air) with a thermopile output of 26 mV to 50 mV, and a response time around 1.4 ms.
引用
收藏
页码:218 / 223
相关论文
共 50 条
  • [31] Thermal Flow Meter with Integrated Thermal Conductivity Sensor
    Kenari, Shirin Azadi
    Wiegerink, Remco J.
    Veltkamp, Henk-Willem
    Sanders, Remco G. P.
    Lotters, Joost C. C.
    MICROMACHINES, 2023, 14 (07)
  • [32] Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes
    Baier, V
    Födisch, R
    Ihring, A
    Kessler, E
    Lerchner, J
    Wolf, G
    Köhler, JM
    Nietzsch, M
    Krügel, M
    SENSORS AND ACTUATORS A-PHYSICAL, 2005, 123-24 : 354 - 359
  • [33] Sandwich-Structured Thermal Interface Materials with High Thermal Conductivity
    Xu, Kang
    Zhang, Zhenbang
    Wang, Yandong
    Li, Maohua
    Chen, Yapeng
    Kong, Xiangdong
    Zhang, Jianxiang
    Yang, Rongjie
    Li, Linhong
    Zhou, Yiwei
    Gong, Ping
    Qin, Yue
    Cao, Yong
    Cai, Tao
    Lin, Cheng-Te
    Jiang, Nan
    Wu, Xinfeng
    Yu, Jinhong
    ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (06): : 1572 - 1581
  • [34] Characteristics of metallic structured catalysts with high thermal conductivity
    Groppi, G
    Airoldi, G
    Cristiani, C
    Tronconi, E
    CATALYSIS TODAY, 2000, 60 (1-2) : 57 - 62
  • [35] THE THERMAL-CONDUCTIVITY OF SOME FLUORITE STRUCTURED COMPOUNDS
    PALCHOUDHURI, S
    BICHILE, GK
    SOLID STATE COMMUNICATIONS, 1989, 70 (04) : 475 - 478
  • [36] Investigating time-resolved response of micro thermal conductivity sensor under various modes of operation
    Struk, Daniel
    Shirke, Amol
    Mahdavifar, Alireza
    Hesketh, Peter J.
    Stetter, Joseph R.
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 254 : 771 - 777
  • [37] Dependence of thermal conductivity in micro to nano silica
    Chari, Vangala Dhanunjana
    Sharma, Deepala V. S. G. K.
    Prasad, Pinnelli S. R.
    Murthy, S. Ramana
    BULLETIN OF MATERIALS SCIENCE, 2013, 36 (04) : 517 - 520
  • [38] Research on thermal conductivity of HGMs at vacuum in room temperature
    Wang, Ping
    Liao, Bin
    An, Zhenguo
    Yan, Kaiqi
    Zhang, Jingjie
    AIP ADVANCES, 2018, 8 (05)
  • [39] MICRO METHOD FOR DETERMINING THERMAL CONDUCTIVITY OF POWDERS
    BANSAL, TD
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1962, D 21 (08): : 285 - &
  • [40] Dependence of thermal conductivity in micro to nano silica
    VANGALA DHANUNJANA CHARI
    DEEPALA V S G K SHARMA
    PINNELLI S R PRASAD
    S RAMANA MURTHY
    Bulletin of Materials Science, 2013, 36 : 517 - 520