From skills to symbols: Learning symbolic representations for abstract high-level planning

被引:0
|
作者
Konidaris, George [1 ,2 ]
Kaelbling, Leslie Pack [3 ]
Lozano-Perez, Tomas [3 ]
机构
[1] Brown University, Providence,RI,02912, United States
[2] Duke University, Durham,NC,27708, United States
[3] MIT CSAIL, 32 Vassar Street, Cambridge,MA,02139, United States
关键词
Abstract representation - Probabilistic classification - Probabilistic density - Probabilistic planning - Probability of success - Specific distribution - Symbolic representation - Theoretical foundations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:215 / 289
相关论文
共 50 条
  • [11] Concept Cells through Associative Learning of High-Level Representations
    Reddy, Leila
    Thorpe, Simon J.
    NEURON, 2014, 84 (02) : 248 - 251
  • [12] Symbolic Execution of High-Level Transformations
    Al-Sibahi, Ahmad Salim
    Dimovski, Aleksandar S.
    Wasowski, Andrzej
    PROCEEDINGS OF THE 2016 ACM SIGPLAN INTERNATIONAL CONFERENCE ON SOFTWARE LANGUAGE ENGINEERING (SLE'16), 2016, : 207 - 220
  • [13] Learning Symbolic Rules over Abstract Meaning Representations for Textual Reinforcement Learning
    Chaudhury, Subhajit
    Swaminathan, Sarathkrishna
    Kimura, Daiki
    Sen, Prithviraj
    Murugesan, Keerthiram
    Uceda-Sosa, Rosario
    Tatsubori, Michiaki
    Fokoue, Achille
    Kapanipathi, Pavan
    Munawar, Asim
    Gray, Alexander
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 6764 - 6776
  • [14] The geometry of high-level visual representations
    Kriegeskorte, Nikolaus
    I-PERCEPTION, 2014, 5 (04): : 412 - 412
  • [15] Learning Efficient Binary Codes From High-Level Feature Representations for Multilabel Image Retrieval
    Ma, Lei
    Li, Hongliang
    Meng, Fanman
    Wu, Qingbo
    Ngan, King Ngi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (11) : 2545 - 2560
  • [16] High-level views on low-level representations
    Diatchki, IS
    Jones, MP
    Leslie, R
    ACM SIGPLAN NOTICES, 2005, 40 (09) : 168 - 179
  • [17] Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces
    Klamt, Tobias
    Behnke, Sven
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 922 - 928
  • [18] Trajectory Planning With Deep Reinforcement Learning in High-Level Action Spaces
    Williams, Kyle R.
    Schlossman, Rachel
    Whitten, Daniel
    Ingram, Joe
    Musuvathy, Srideep
    Pagan, James
    Williams, Kyle A.
    Green, Sam
    Patel, Anirudh
    Mazumdar, Anirban
    Parish, Julie
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (03) : 2513 - 2529
  • [19] Learning high-level visual representations from a child's perspective without strong inductive biases
    Orhan, A. Emin
    Lake, Brenden M.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (03) : 271 - 283
  • [20] From symbols to sounds:: Visual symbolic information activates sound representations
    Widmann, A
    Kujala, T
    Tervaniemi, M
    Kujala, A
    Schröger, E
    PSYCHOPHYSIOLOGY, 2004, 41 (05) : 709 - 715