The harmonic decomposition reconstruction for the exponential Radon transform

被引:0
|
作者
Wang, Jin-Ping [1 ]
Du, Jin-Yuan [1 ]
机构
[1] School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China
基金
中国国家自然科学基金;
关键词
Computerized tomography - Fourier transforms - Mapping - Theorem proving - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
The exponential Radon transform, a generalization of the Radon transform, is defined and studied as a mapping of function spaces. It is represented in terms of Fourier transform of its domain and range, and this leads to the harmonic decomposition reconstruction. The results are similar results of Tretiak and Metz.
引用
收藏
页码:1 / 5
相关论文
共 50 条
  • [41] Range spaces and inversion formulas for the exponential radon transform and its dual
    Lazhari, MN
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1999, 6 (03) : 314 - 330
  • [42] THE CIRCULAR HARMONIC TRANSFORM ALGORITHM FOR SPECT RECONSTRUCTION
    HAWKINS, WG
    LEICHNER, PK
    YANG, NC
    FRENKEL, TL
    LOUDENSLAGER, DM
    JOURNAL OF NUCLEAR MEDICINE, 1986, 27 (06) : 895 - 895
  • [43] THE CIRCULAR HARMONIC TRANSFORM ALGORITHM FOR SPECT RECONSTRUCTION
    HAWKINS, WG
    LEICHNER, PK
    YANG, NC
    FRENKEL, TK
    LOUDENSLAGER, DM
    JOURNAL OF NUCLEAR MEDICINE, 1986, 27 (05) : 735 - 735
  • [44] A NEW BIDIMENSIONAL EMPIRICAL MODE DECOMPOSITION BY USING RADON TRANSFORM
    Yang, Zhihua
    Yang, Lihua
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2011, 9 (03) : 387 - 396
  • [45] A NOTE ON SINGULAR VALUE DECOMPOSITION FOR RADON TRANSFORM IN R~n
    王金平
    杜金元
    ActaMathematicaScientia, 2002, (03) : 311 - 318
  • [46] The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth
    Biswas, Kingshook
    Knieper, Gerhard
    Peyerimhoff, Norbert
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 126 - 163
  • [47] The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth
    Kingshook Biswas
    Gerhard Knieper
    Norbert Peyerimhoff
    The Journal of Geometric Analysis, 2021, 31 : 126 - 163
  • [48] An Algebraic Method for Reconstruction of Harmonic Functions via Radon Projections
    Georgieva, I.
    Hofreither, C.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2012, 1487 : 112 - 119
  • [49] The discrete Radon transform: A more efficient approach to image reconstruction?
    Kingston, Andrew
    Svalbe, Iniants
    Guedon, Jean-Pierre
    DEVELOPMENTS IN X-RAY TOMOGRAPHY VI, 2008, 7078
  • [50] Reconstruction of a Radar Target Density Function Using Radon Transform
    Cinar, Ridvan Firat
    Demirkol, Askin
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,