The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram

被引:0
|
作者
机构
[1] Cameron, R.H.
[2] Schüssler, M.
来源
| 1600年 / EDP Sciences卷 / 591期
关键词
Diffusion - Solar energy - Interactive devices;
D O I
暂无
中图分类号
学科分类号
摘要
Context. In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. Aims. We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. Methods. We considered the time evolution of mean latitude and width of the activity belts of solar cycles 12-23 and their dependence on cycle strength. We interpreted the decline phase of the cycles as a diffusion process. Results. The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their (full) width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal flux across the equator, we infer the turbulent diffusivity experienced by the toroidal field, wherever it is located, to be in the range 150-450 km2 s-1. Strong diffusive latitudinal spreading of the toroidal flux underneath the activity belts can be inhibited by an inflow toward the toroidal field bands in the convection zone with a magnitude of several meters per second. Conclusions. The inferred value of the turbulent magnetic diffusivity affecting the toroidal field agrees, to order of magnitude, with estimates based on mixing-length models for the solar convection zone. This is at variance with the requirement of flux-transport dynamo models. The inflows required to keep the toroidal field bands together before they approach the equator are similar to the inflows toward the activity belts observed with local helioseismology. © ESO, 2016.
引用
收藏
相关论文
共 50 条
  • [1] The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram
    Cameron, R. H.
    Schuessler, M.
    ASTRONOMY & ASTROPHYSICS, 2016, 591
  • [2] Sunspot decay as turbulent erosion of a magnetic flux tube
    Petrovay, K
    van Driel-Gesztelyi, L
    FIRST ADVANCES IN SOLAR PHYSICS EUROCONFERENCE : ADVANCES IN THE PHYSICS OF SUNSPOTS, 1997, 118 : 145 - 149
  • [3] The solar dynamo in the light of the distribution of various sunspot magnetic classes over butterfly diagram
    Sokoloff, D.
    Khlystova, A. I.
    ASTRONOMISCHE NACHRICHTEN, 2010, 331 (01) : 82 - 87
  • [4] DIFFUSION OF MAGNETIC FIELD AND REMOVAL OF MAGNETIC FLUX FROM CLOUDS VIA TURBULENT RECONNECTION
    Santos-Lima, R.
    Lazarian, A.
    de Gouveia Dal Pino, E. M.
    Cho, J.
    ASTROPHYSICAL JOURNAL, 2010, 714 (01): : 442 - 461
  • [5] ON TURBULENT-DIFFUSION OF MAGNETIC-FIELDS AND THE LOSS OF MAGNETIC-FLUX FROM STARS
    VAINSHTEIN, SI
    ROSNER, R
    ASTROPHYSICAL JOURNAL, 1991, 376 (01): : 199 - 203
  • [6] Zonal flows driven by the turbulent energy flux and the turbulent toroidal Reynolds stress in a magnetic fusion torus
    Wang, Shaojie
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [7] PROPERTIES OF MAGNETIC HELICITY FLUX IN TURBULENT DYNAMOS
    Vishniac, Ethan T.
    Shapovalov, Dmitry
    ASTROPHYSICAL JOURNAL, 2014, 780 (02):
  • [8] The solar magnetic field since 1700 I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram
    Jiang, J.
    Cameron, R. H.
    Schmitt, D.
    Schuessler, M.
    ASTRONOMY & ASTROPHYSICS, 2011, 528
  • [9] Magnetic flux transport in the ISM through turbulent ambipolar diffusion
    Heitsch, F
    Zweibel, EG
    Adrianne
    Slyz, D
    Devriendt, JEG
    ASTROPHYSICS AND SPACE SCIENCE, 2004, 292 (1-4) : 45 - 51
  • [10] Magnetic Flux Transport in the ISM Through Turbulent Ambipolar Diffusion
    Fabian Heitsch
    Ellen G. Zweibel
    Adrianne D. Slyz
    Julien E.G. Devriendt
    Astrophysics and Space Science, 2004, 292 : 45 - 51