Collisional merging process of field-reversed configuration plasmas in the FAT-CM device

被引:0
|
作者
Tanaka F. [1 ]
Asai T. [1 ]
Sekiguchi J. [1 ]
Takahashi T. [1 ]
Ishiwata J. [1 ]
Edo T. [1 ]
Ono N. [1 ]
Matsui K. [1 ]
Watanabe S. [1 ]
Hishida D. [1 ]
Kobayashi D. [1 ]
Hirose Y. [1 ]
Hosozawa A. [1 ]
Mok Y. [2 ]
Dettrick S. [2 ]
Roche T. [2 ]
Gota H. [2 ]
Binderbauer M.W. [2 ]
Tajima T. [2 ,3 ]
机构
[1] College of Science and Technology, Nihon University, Tokyo
[2] TAE Technologies, Inc., 19631 Pauling, Foothill Ranch, 92610, CA
[3] Department of Physics and Astronomy, University of California at Irvine, Irvine, 92697, CA
基金
日本学术振兴会;
关键词
2D resistive MHD simulation; Field-reversed configuration; FRC merging; High beta plasma; Magnetically confined plasma;
D O I
10.1585/PFR.13.3402098
中图分类号
学科分类号
摘要
In order to investigate the collisional merging process of field-reversed configurations (FRCs), the FAT device has recently been upgraded to FAT-CM, consisting of two field-reversed theta-pinch (FRTP) formation sections and the confinement section. Collisional merging of the two FRCs causes a conversion of the kinetic energy to mostly thermal ion energy, resulting in an increase of the ion pressure that greatly expands the FRC size/volume. This increase of the FRC size is observed by magnetic diagnostics in the confinement region, leading to an increase in the excluded flux; on a side note, these characteristics/phenomena have also been observed in C- 2/C-2U experiments at TAE Technologies. The process of FRC formation, translation and collisional merging in FAT-CM has been simulated by Lamy Ridge, 2D resistive magnetohydrodynamics code, in which the same phenomenon of the excluded-flux increase via FRC collisional merging has been observed. Simulation results also indicate that there is an importance of the external magnetic field structure/profile in the confinement region, clearly affecting the FRC merging. Steeper magnetic field gradient by a strong mirror field appears to suppress the axial expansion of collided FRCs and lead a merged FRC to higher temperature. © 2019 The Japan Society of Plasma Science and Nuclear Fusion Research.
引用
下载
收藏
相关论文
共 50 条
  • [41] A high performance field-reversed configuration
    Binderbauer, M. W.
    Tajima, T.
    Steinhauer, L. C.
    Garate, E.
    Tuszewski, M.
    Schmitz, L.
    Guo, H. Y.
    Smirnov, A.
    Gota, H.
    Barnes, D.
    Deng, B. H.
    Thompson, M. C.
    Trask, E.
    Yang, X.
    Putvinski, S.
    Rostoker, N.
    Andow, R.
    Aefsky, S.
    Bolte, N.
    Bui, D. Q.
    Ceccherini, F.
    Clary, R.
    Cheung, A. H.
    Conroy, K. D.
    Dettrick, S. A.
    Douglass, J. D.
    Feng, P.
    Galeotti, L.
    Giammanco, F.
    Granstedt, E.
    Gupta, D.
    Gupta, S.
    Ivanov, A. A.
    Kinley, J. S.
    Knapp, K.
    Korepanov, S.
    Hollins, M.
    Magee, R.
    Mendoza, R.
    Mok, Y.
    Necas, A.
    Primavera, S.
    Onofri, M.
    Osin, D.
    Rath, N.
    Roche, T.
    Romero, J.
    Schroeder, J. H.
    Sevier, L.
    Sibley, A.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [42] ADVANCED FUELS IN A FIELD-REVERSED CONFIGURATION
    MOMOTA, H
    OKAMOTO, M
    NOMURA, Y
    OHNISHI, M
    YOSHIKAWA, K
    YAMAMOTO, Y
    BERK, HL
    TAJIMA, T
    ISHIDA, A
    SATO, K
    OHI, S
    MILEY, GH
    FUSION TECHNOLOGY, 1987, 11 (02): : 436 - 437
  • [43] Separatrix shape of field-reversed configuration
    Ohkuma, Yasunori
    Hiroi, Masanori
    Ikeyama, Taeko
    Nogi, Yasuyuki
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [44] Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner
    Zhang, S
    Intrator, TP
    Wurden, GA
    Waganaar, WJ
    Taccetti, JM
    Renneke, R
    Grabowski, C
    Ruden, EL
    PHYSICS OF PLASMAS, 2005, 12 (05) : 1
  • [45] Control of elongation for field-reversed configuration plasmas using axial field index of a mirror confinement field
    Takahashi, T
    Gota, H
    Nogi, Y
    PHYSICS OF PLASMAS, 2004, 11 (09) : 4462 - 4467
  • [46] Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device
    Gota, H.
    Binderbauer, M. W.
    Tajima, T.
    Putvinski, S.
    Tuszewski, M.
    Deng, B. H.
    Dettrick, S. A.
    Gupta, D. K.
    Korepanov, S.
    Magee, R. M.
    Roche, T.
    Romero, J. A.
    Smirnov, A.
    Sokolov, V
    Song, Y.
    Steinhauer, L. C.
    Thompson, M. C.
    Trask, E.
    Van Drie, A. D.
    Yang, X.
    Yushmanov, P.
    Zhai, K.
    Allfrey, I
    Andow, R.
    Barraza, E.
    Beall, M.
    Bolte, N. G.
    Bomgardner, E.
    Ceccherini, F.
    Chirumamilla, A.
    Clary, R.
    DeHaas, T.
    Douglass, J. D.
    DuBois, A. M.
    Dunaevsky, A.
    Fallah, D.
    Feng, P.
    Finucane, C.
    Fulton, D. P.
    Galeotti, L.
    Galvin, K.
    Granstedt, E. M.
    Griswold, M. E.
    Guerrero, U.
    Gupta, S.
    Hubbard, K.
    Isakov, I.
    Kinley, J. S.
    Korepanov, A.
    Krause, S.
    NUCLEAR FUSION, 2019, 59 (11)
  • [47] Studies of global stability of field-reversed configuration plasmas using a rigid body model
    Ji, H
    Yamada, M
    Kulsrud, R
    Pomphrey, N
    Himura, H
    PHYSICS OF PLASMAS, 1998, 5 (10) : 3685 - 3693
  • [48] Propagation and damping characteristics of low-frequency waves in field-reversed configuration plasmas
    Inomoto, Michiaki
    Yamamoto, Satoshi
    Iwasawa, Naotaka
    Kitano, Katsuhisa
    Okada, Shigefumi
    PHYSICS OF PLASMAS, 2007, 14 (10)
  • [49] Field-reversed configuration formed by in-vessel θ-pinch in a tandem mirror device
    Lin, Munan
    Liu, Ming
    Zhu, Guanghui
    Shi, Peiyun
    Zheng, Jian
    Lu, Quanming
    Sun, Xuan
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (09):
  • [50] A HIGH PERFORMANCE FIELD-REVERSED CONFIGURATION REGIME IN THE C-2 DEVICE
    Gota, H.
    Tuszewski, M.
    Smirnov, A.
    Korepanov, S.
    Akhmetov, T.
    Ivanov, A.
    Voskoboynikov, R.
    Binderbauer, M. W.
    Guo, H. Y.
    Barnes, D.
    Aefsky, S.
    Brown, R.
    Bui, D. Q.
    Clary, R.
    Conroy, K. D.
    Deng, B. H.
    Dettrick, S. A.
    Douglass, J. D.
    Garate, E.
    Glass, F. J.
    Gupta, D.
    Gupta, S.
    Kinley, J. S.
    Knapp, K.
    Hollins, M.
    Longman, A.
    Li, X. L.
    Luo, Y.
    Mendoza, R.
    Mok, Y.
    Necas, A.
    Primavera, S.
    Osin, D.
    Rostoker, N.
    Ruskov, E.
    Schmitz, L.
    Schroeder, J. H.
    Sevier, L.
    Sibley, A.
    Song, Y.
    Sun, X.
    Tajima, T.
    Thompson, M. C.
    Trask, E.
    Van Drie, A. D.
    Walters, J. K.
    Wyman, M. D.
    Zhai, K.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) : 139 - 142