Strong convergence of the viscosity douglas-rachford algorithm for inclusion problems

被引:0
|
作者
Wang Y. [1 ]
Zhang H. [1 ]
机构
[1] College of Mathematics and Information Science, Henan Normal University, Xinxiang
来源
基金
中国国家自然科学基金;
关键词
Douglas-Rachford algorithm; Hilbert space; Reflected resolvent; Strong convergence;
D O I
10.23952/asvao.2.2020.3.08
中图分类号
学科分类号
摘要
In recent years, the Douglas-Rachford algorithm received much attention due to its various applications in image recovery, signal processing, and machine learning. In this paper, we consider the Douglas-Rachford algorithm in the setting of Hilbert spaces. We introduce a viscosity Douglas-Rachford algorithm with multi-parameters, and establish its strong convergence under some mild conditions. ©2020 Applied Set-Valued Analysis and Optimization
引用
收藏
页码:339 / 349
页数:10
相关论文
共 50 条
  • [21] A convergent relaxation of the Douglas-Rachford algorithm
    Nguyen Hieu Thao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 841 - 863
  • [22] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [23] A simplified proof of weak convergence in Douglas-Rachford method
    Svaiter, Benar F.
    OPERATIONS RESEARCH LETTERS, 2019, 47 (04) : 291 - 293
  • [24] Convergence analysis of two-step inertial Douglas-Rachford algorithm and application
    Avinash Dixit
    D. R. Sahu
    Pankaj Gautam
    T. Som
    Journal of Applied Mathematics and Computing, 2022, 68 : 953 - 977
  • [25] Convergence analysis of two-step inertial Douglas-Rachford algorithm and application
    Dixit, Avinash
    Sahu, D. R.
    Gautam, Pankaj
    Som, T.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 953 - 977
  • [26] A Lyapunov-type approach to convergence of the Douglas-Rachford algorithm for a nonconvex setting
    Dao, Minh N.
    Tam, Matthew K.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (01) : 83 - 112
  • [27] NEW DOUGLAS-RACHFORD ALGORITHMIC STRUCTURES AND THEIR CONVERGENCE ANALYSES
    Censor, Yair
    Mansour, Rafiq
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 474 - 487
  • [28] The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle
    Bauschke, Heinz H.
    Cruz, J. Y. Bello
    Nghia, Tran T. A.
    Phan, Hung M.
    Wang, Xianfu
    JOURNAL OF APPROXIMATION THEORY, 2014, 185 : 63 - 79
  • [29] THE DOUGLAS-RACHFORD ALGORITHM CONVERGES ONLY WEAKLY
    Bui, Minh N.
    Combettes, Patrick L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) : 1118 - 1120
  • [30] On the convergence rate of Douglas-Rachford operator splitting method
    He, Bingsheng
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2015, 153 (02) : 715 - 722