Two-step second-order TVD scheme for nonlinear hyperbolic conservation laws

被引:0
|
作者
Yu, Heng [1 ]
Zhang, Hui-Sheng [2 ]
机构
[1] Inst. of Appl. Phys. and Comp. Math., Beijing 100088, China
[2] Dept. of Mech. and Eng. Sci., Fudan Univ., Shanghai 200433, China
关键词
Euler systems - Nonlinear hyperbolic conservation laws - Total variation diminishing scheme;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:414 / 418
相关论文
共 50 条
  • [41] Local conservation laws of second-order evolution equations
    Popovych, Roman O.
    Samoilenko, Anatoly M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (36)
  • [42] Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws
    McMillan, Benjamin B.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [43] Identification of second-order Kautz models by two-step pole location optimisation
    Lira de Andrade, Renato Augusto
    Barros, Pericles Rezende
    Correia Lima, Rafael Bezerra
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 836 - 841
  • [44] Ninth-order, explicit, two-step methods for second-order inhomogeneous linear IVPs
    Kovalnogov, Vladislav N.
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4918 - 4926
  • [45] A CLASS OF TWO-STEP TVD MACCORMACK TYPE NUMERICAL SCHEME FOR MHD EQUATIONS
    FENG Xueshang WEI Fengsi ZHONG DingkunCenter for Space Science and Applied Research The Chinese Academy of Sciences Beijing
    空间科学学报, 2003, (06) : 401 - 412
  • [46] On a second order residual estimator for nonlinear conservation laws
    Sonar, T
    Thomas, I
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 863 - 871
  • [47] Riemann problem for a second-order hyperbolic scalar conservation law
    Mnif, M
    Sfax, IPEI
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (9-10) : 1589 - 1627
  • [48] Seventh order compact-WENO scheme for hyperbolic conservation laws
    Guo, Yan
    Shi, YuFeng
    COMPUTERS & FLUIDS, 2018, 176 : 193 - 209
  • [49] A new high order hybrid WENO scheme for hyperbolic conservation laws
    Li, Liang
    Wang, Zhenming
    Zhao, Zhong
    Zhu, Jun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4347 - 4376
  • [50] A modified fifth-order WENO scheme for hyperbolic conservation laws
    Rathan, Samala
    Raju, G. Naga
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (05) : 1531 - 1549