Dynamics of a one-dimensional inelastic particle system

被引:0
|
作者
Yang, Junzhong [1 ]
机构
[1] James Franck Institute, University of Chicago, 5640 South Ellis Avenue, Chicago,IL,60637, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The dynamical behavior of a one-dimensional inelastic particle system is investigated. By the means of map and spatial-temporal pattern we find the chaotic motion and the periodic motion in this simple system. We characterize several kinds of transitions and introduce the idea of a small collision chain to explain the universal relation n = N2 between the number of collisions in a cycle n and the number of the particles N of the system for period-1 behavior. ©2000 The American Physical Society.
引用
收藏
页码:2920 / 2923
相关论文
共 50 条
  • [21] FIXED POINTS FOR ONE-DIMENSIONAL PARTICLE SYSTEM WITH STRONG INTERACTION
    Malyshev, V. A.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (01) : 139 - 147
  • [22] One-Dimensional Microstructure Dynamics
    Berezovski, Arkadi
    Engelbrecht, Jueri
    Maugin, Gerard A.
    [J]. MECHANICS OF MICROSTRUCTURED SOLIDS: CELLULAR MATERIALS, FIBRE REINFORCED SOLIDS AND SOFT TISSUES, 2009, 46 : 21 - +
  • [23] Renormalization in one-dimensional dynamics
    De Melo, W.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (08) : 1185 - 1197
  • [24] Renormalization in one-dimensional dynamics
    Skripchenko, A. S.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 983 - 1021
  • [25] One-dimensional measles dynamics
    Al-Showaikh, FNM
    Twizell, EH
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) : 169 - 194
  • [26] Dynamics of one-dimensional supersolids
    Kunimi, Masaya
    Kobayashi, Michikazu
    Kato, Yusuke
    [J]. 26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [27] Rigidity in one-dimensional dynamics
    Khanin, KM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2311 - 2324
  • [28] PARTICLE IN THE ONE-DIMENSIONAL CHAMPAGNE BOTTLE
    MILLER, GR
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1979, 56 (11) : 709 - 710
  • [29] ORDERING IN A ONE-DIMENSIONAL DRIVEN DIFFUSIVE SYSTEM WITH PARALLEL DYNAMICS
    BAGNOLI, F
    DROZ, M
    FRACHEBOURG, L
    [J]. PHYSICA A, 1991, 179 (02): : 269 - 276
  • [30] Dynamics of a one-dimensional nonlinear poroelastic system weakly damped
    Dos Santos, Manoel
    Freitas, Mirelson
    Ramos, Anderson
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (1-2): : 89 - 112