Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment

被引:1
|
作者
Dilshad N. [1 ]
Khan T. [2 ]
Song J. [1 ]
机构
[1] Department of Convergence Engineering for Intelligent Drone, Seoul
[2] Department of Computer Science, Islamia College Peshawar, Peshawar
来源
关键词
Deep learning; drone; embedded vision; emergency monitoring; fire classification; fire detection; IoT; rescue; search;
D O I
10.32604/csse.2023.034475
中图分类号
学科分类号
摘要
To prevent economic, social, and ecological damage, fire detection and management at an early stage are significant yet challenging. Although computationally complex networks have been developed, attention has been largely focused on improving accuracy, rather than focusing on real-time fire detection. Hence, in this study, the authors present an efficient fire detection framework termed E-FireNet for real-time detection in a complex surveillance environment. The proposed model architecture is inspired by the VGG16 network, with significant modifications including the entire removal of Block-5 and tweaking of the convolutional layers of Block-4. This results in higher performance with a reduced number of parameters and inference time. Moreover, smaller convolutional kernels are utilized, which are particularly designed to obtain the optimal details from input images, with numerous channels to assist in feature discrimination. In E-FireNet, three steps are involved: preprocessing of collected data, detection of fires using the proposed technique, and, if there is a fire, alarms are generated and transmitted to law enforcement, healthcare, and management departments. Moreover, E-FireNet achieves 0.98 accuracy, 1 precision, 0.99 recall, and 0.99 F1-score. A comprehensive investigation of various Convolutional Neural Network (CNN) models is conducted using the newly created Fire Surveillance SV-Fire dataset. The empirical results and comparison of numerous parameters establish that the proposed model shows convincing performance in terms of accuracy, model size, and execution time. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:749 / 764
页数:15
相关论文
共 50 条
  • [31] CGKN: A deep learning framework for modeling complex dynamical systems and efficient data assimilation
    Chen, Chuanqi
    Chen, Nan
    Zhang, Yinling
    Wu, Jin-Long
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 532
  • [32] Visual Intelligence in Smart Cities: A Lightweight Deep Learning Model for Fire Detection in an IoT Environment
    Nadeem, Muhammad
    Dilshad, Naqqash
    Alghamdi, Norah Saleh
    Dang, L. Minh
    Song, Hyoung-Kyu
    Nam, Junyoung
    Moon, Hyeonjoon
    SMART CITIES, 2023, 6 (05): : 2245 - 2259
  • [33] Deep learning-empowered intrusion detection framework for the Internet of Medical Things environment
    Shambharkar, Prashant Giridhar
    Sharma, Nikhil
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (10) : 6001 - 6050
  • [34] An Efficient Deep Reinforcement Learning Framework for UAVs
    Zhou, Shanglin
    Li, Bingbing
    Ding, Caiwu
    Lu, Lu
    Ding, Caiwen
    PROCEEDINGS OF THE TWENTYFIRST INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2020), 2020, : 323 - 328
  • [35] A novel framework for potato leaf disease detection using an efficient deep learning model
    Mahum, Rabbia
    Munir, Haris
    Mughal, Zaib-Un-Nisa
    Awais, Muhammad
    Khan, Falak Sher
    Saqlain, Muhammad
    Mahamad, Saipunidzam
    Tlili, Iskander
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2023, 29 (02): : 303 - 326
  • [36] An efficient cybersecurity framework for facial video forensics detection based on multimodal deep learning
    Sedik, Ahmed
    Faragallah, Osama S.
    El-sayed, Hala S.
    El-Banby, Ghada M.
    Abd El-Samie, Fathi E.
    Khalaf, Ashraf A. M.
    El-Shafai, Walid
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1251 - 1268
  • [37] An efficient cybersecurity framework for facial video forensics detection based on multimodal deep learning
    Ahmed Sedik
    Osama S. Faragallah
    Hala S. El-sayed
    Ghada M. El-Banby
    Fathi E. Abd El-Samie
    Ashraf A. M. Khalaf
    Walid El-Shafai
    Neural Computing and Applications, 2022, 34 : 1251 - 1268
  • [38] A Robust Framework for Severity Detection of Knee Osteoarthritis Using an Efficient Deep Learning Model
    Mahum, Rabbia
    Irtaza, Aun
    El-Meligy, Mohammed A. A.
    Sharaf, Mohamed
    Tlili, Iskander
    Butt, Saamia
    Mahmood, Asad
    Awais, Muhammad
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (07)
  • [39] MSNet: A Novel Deep Learning Framework for Efficient Missing Seedling Detection in Maize Fields
    Shi, Yong
    Xu, Ruijie
    Qi, Zhiquan
    APPLIED ARTIFICIAL INTELLIGENCE, 2025, 39 (01)
  • [40] A secure and efficient deep learning-based intrusion detection framework for the internet of vehicles
    Hasim Khan
    Ghanshyam G. Tejani
    Rayed AlGhamdi
    Sultan Alasmari
    Naveen Kumar Sharma
    Sunil Kumar Sharma
    Scientific Reports, 15 (1)