Lower bound plane stress element for modelling 3D structures

被引:3
|
作者
Herfelt M.A. [1 ,2 ]
Poulsen P.N. [2 ]
Hoang L.C. [2 ]
Jensen J.F. [1 ]
机构
[1] NIRAS A/S, Virum
[2] Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby
来源
Herfelt, Morten A. (mahe@niras.dk) | 1600年 / Thomas Telford Services Ltd卷 / 170期
关键词
Computational mechanics; Concrete structures; Steel structures;
D O I
10.1680/jencm.16.00026
中图分类号
学科分类号
摘要
In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper, the formulation of such an element is given and the Mohr–Coulomb and von Mises criteria are presented for second-order cone programming. Three examples of increasing complexity are used to analyse the performance of the element and the convergence rate and to demonstrate the potential of the proposed element. © 2017, ICE Publishing: All rights reserved.
引用
收藏
页码:107 / 117
页数:10
相关论文
共 50 条
  • [31] A 3D fibre beam-column element with shear modelling for the inelastic analysis of steel structures
    Papachristidis, Aristidis
    Fragiadakis, Michalis
    Papadrakakis, Manolis
    COMPUTATIONAL MECHANICS, 2010, 45 (06) : 553 - 572
  • [32] Determination of the influence of karst structures on the servicability and stability of traffic tunnels by 3D finite element modelling
    Poettler, Rudolf
    Spiegl, Andreas
    BAUTECHNIK, 2007, 84 (02) : 103 - 112
  • [33] 3D FINITE ELEMENT MODELLING OF COMPLEX STRIP ROLLING
    Jiang, Z. Y.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (31-32): : 5850 - 5856
  • [34] 3D segmentation and finite element modelling of spine segments
    Kaminsky, J
    Klinge, P
    Bokemeyer, M
    Samii, M
    CARS 2003: COMPUTER ASSISTED RADIOLOGY AND SURGERY, PROCEEDINGS, 2003, 1256 : 41 - 46
  • [35] Inductance calculation of 3D superconducting structures with ground plane
    Teh, CK
    Kitagawa, M
    Okabe, Y
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1999, 12 (11): : 921 - 924
  • [36] 3D Eulerian Finite Element Modelling of End Milling
    Gao, Yifan
    Ko, Jeong Hoon
    Lee, Heow Pueh
    8TH CIRP CONFERENCE ON HIGH PERFORMANCE CUTTING (HPC 2018), 2018, 77 : 159 - 162
  • [37] 3D finite element modelling of a composite patch repair
    Kumar, AM
    Singh, R
    ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 2159 - 2166
  • [38] Automated Finite Element Modelling of 3D Woven Textiles
    Zeng, X. S.
    Long, A. C.
    Clifford, M. J.
    Iniotakis, C.
    Probst-Schendzielorz, S.
    Schmitt, M. W.
    PROCEEDING OF THE THIRD WORLD CONFERENCE ON 3D FABRICS AND THEIR APPLICATIONS, 2010, : 222 - 226
  • [39] 3D finite element modelling of segmented chip formation
    Aurich, J. C.
    Bil, H.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2006, 55 (01) : 47 - 50
  • [40] 3D finite element modelling of electromagnetic forming process
    Robin, Vincent
    Feulvarch, Eric
    Bergheau, Jean Michel
    MECANIQUE & INDUSTRIES, 2008, 9 (02): : 133 - 138