Gaussian kullback-leibler approximate inference

被引:0
|
作者
Challis, Edward [1 ]
Barber, David [1 ]
机构
[1] Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom
关键词
D O I
暂无
中图分类号
学科分类号
摘要
53
引用
收藏
页码:2239 / 2286
相关论文
共 50 条
  • [41] Kullback-Leibler divergence: A quantile approach
    Sankaran, P. G.
    Sunoj, S. M.
    Nair, N. Unnikrishnan
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 111 : 72 - 79
  • [42] A novel approach to approximate Kullback-Leibler distance rate for hidden Markov models
    Liang, Hongkang
    Anderson-Sprecher, Richard C.
    Kubichek, Robert F.
    Talwar, Gaurav
    [J]. 2005 39TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2005, : 869 - 873
  • [43] Thinking outside the box: Statistical inference based on Kullback-Leibler empirical projections
    Doksum, Kjell
    Ozeki, Akichika
    Kim, Jihoon
    Neto, Elias Chaibub
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (12) : 1201 - 1213
  • [44] The Kullback-Leibler divergence and nonnegative matrices
    Boche, Holger
    Stanczak, Slawomir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5539 - 5545
  • [45] The centroid of the symmetrical Kullback-Leibler distance
    Veldhuis, R
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (03) : 96 - 99
  • [46] On cumulative residual Kullback-Leibler information
    Park, Sangun
    Rao, Murali
    Shin, Dong Wan
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (11) : 2025 - 2032
  • [47] A decision cognizant Kullback-Leibler divergence
    Ponti, Moacir
    Kittler, Josef
    Riva, Mateus
    de Campos, Teofilo
    Zor, Cemre
    [J]. PATTERN RECOGNITION, 2017, 61 : 470 - 478
  • [48] AN INVOLUTION INEQUALITY FOR THE KULLBACK-LEIBLER DIVERGENCE
    Pinelis, Iosif
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 233 - 235
  • [49] Kullback-Leibler and Renyi divergence rate for Gaussian stationary ARMA processes comparison
    Grivel, Eric
    Diversi, Roberto
    Merchan, Fernando
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 116
  • [50] Distributions of the Kullback-Leibler divergence with applications
    Belov, Dmitry I.
    Armstrong, Ronald D.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2011, 64 (02): : 291 - 309