The geometry and kinematics of a toothed gear of variable motion

被引:0
|
作者
Kowalczyk, Leon [1 ]
Urbanek, Stanislaw [1 ]
机构
[1] Technical Univ.of Lódz, Department Mechanics Textile Mach., Ul. Zeromskiego 116, Lódz´ 90-543, Poland
来源
Fibres and Textiles in Eastern Europe | 2003年 / 11卷 / 03期
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper presents a toothed gear, in which an abaxially mounted toothed wheel is the active link, while a non-circular pinion (guaranteeing continuous interaction at a constant distance between the axes of rotation) is the passive link. Equations describing the shape of the rolling line of a non-circular pinion and its basic kinematic parameters have been determined.
引用
收藏
页码:60 / 62
相关论文
共 50 条
  • [31] KINEMATICS OF A N-BAY TRIANGLE TRIANGLE VARIABLE GEOMETRY TRUSS MANIPULATOR
    BEINER, L
    ROBOTICA, 1992, 10 : 263 - 267
  • [32] Non-Parallelism of Toothed Gear Shafts Axes as a Source of Gear Housing Vibration
    Juzek, M.
    Wojnar, G.
    Turon, K.
    Czech, P.
    Slowinski, P.
    Burdzik, R.
    TRANSPORT MEANS 2017, PTS I-III, 2017, : 601 - 606
  • [33] KINEMATICS OF AN EPICYCLIC GEAR PUMP
    WOJCIK, CK
    JOURNAL OF MECHANICAL DESIGN-TRANSACTIONS OF THE ASME, 1979, 101 (03): : 449 - 454
  • [34] Dynamic model of a harmonic drive in a toothed gear transmission system
    Folega, Piotr
    Wojnar, Grzegorz
    Burdzik, Rafal
    Konieczny, Lukasz
    JOURNAL OF VIBROENGINEERING, 2014, 16 (06) : 3096 - 3104
  • [36] Type Synthesis and Kinematics of a Modular Variable Geometry Truss Mechanism for Aircraft Wing Morphing
    Finistauri, Allan Daniel
    Xi, Fengfeng
    RECONFIGURABLE MECHANISMS AND ROBOTS, 2009, : 470 - 477
  • [37] Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators
    Qian L.-H.
    Hu S.-Q.
    Yang Y.-S.
    Hu, Shi-Qiang (sqhu@sjtu.edu.cn), 1600, Zhejiang University (51): : 75 - 81and130
  • [38] ALGEBRAIC GEOMETRY AND KINEMATICS
    Husty, Manfred L.
    Schroecker, Hans-Peter
    NONLINEAR COMPUTATIONAL GEOMETRY, 2010, 151 : 85 - 107
  • [39] On the motion of a body with a rigid shell and variable mass geometry in a perfect fluid
    Kozlov, VV
    Ramodanov, SM
    DOKLADY PHYSICS, 2002, 47 (02) : 132 - 135
  • [40] Geometry of motion and nutation stability of free axisymmetric variable mass systems
    Angadh Nanjangud
    Nonlinear Dynamics, 2018, 94 : 2205 - 2218