共 29 条
- [21] Tian Y., Zhao C.Y., A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals, Energy, 36, 9, pp. 5539-5546, (2011)
- [22] Feng S.S., Shi M., Li Y.F., Et al., Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam, International Journal of Heat & Mass Transfer, 90, pp. 838-847, (2015)
- [23] Hu X., Patnaik S.S., Modeling phase change material in micro-foam under constant temperature condition, International Journal of Heat & Mass Transfer, 68, 1, pp. 677-682, (2014)
- [24] Zhang P., Meng Z.N., Zhu H., Et al., Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam, Applied Energy, 182, pp. 1971-1983, (2015)
- [25] Fang X., Fan L.W., Ding Q., Et al., Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets, Energy & Fuels, 27, 7, pp. 4041-4047, (2013)
- [26] Khodadadi J.M., Fan L., Babaei H., Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review, Renewable & Sustainable Energy Reviews, 24, 10, pp. 418-444, (2013)
- [27] Harish S., Orejon D., Takata Y., Et al., Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Applied Thermal Engineering, 80, pp. 205-211, (2015)
- [28] Das N., Kohno M., Takata Y., Et al., Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system, Applied Thermal Engineering, 125, pp. 880-890, (2017)
- [29] Krieger I.M., Dougherty T.J., A mechanism for non-newtonian flow in suspensions of rigid spheres, Journal of Rheology, 3, 1, pp. 137-152, (1959)