A meshless method for solving the 2D brusselator reaction-diffusion system

被引:0
|
作者
Mohammadi, M. [1 ]
Mokhtari, R. [2 ]
Schaback, R. [3 ]
机构
[1] Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Ave, Tehran,1561836314, Iran
[2] Department of Mathematical Sciences, Isfahan University of Technology, Isfahan,84156-83111, Iran
[3] Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16-18, Göttingen,D-37073, Germany
来源
关键词
Diffusion in liquids - Dynamic models - Hilbert spaces - Phase space methods - Vector spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the two-dimensional (2D) Brusselator reaction-diffusion system is simulated numerically by the method of lines. The proposed method is implemented as a meshless method based on spatial trial functions in the reproducing kernel Hilbert spaces. For efficiency and stability reasons, we use the Newton basis introduced recently by Müller and Schaback. The method is shown to work in all interesting situations described by Hopf bifurcations and Turing patterns. Copyright © 2014 Tech Science Press
引用
收藏
页码:113 / 138
相关论文
共 50 条
  • [1] A Meshless Method for Solving the 2D Brusselator Reaction-Diffusion System
    Mohammadi, M.
    Mokhtari, R.
    Schaback, R.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 101 (02): : 113 - 138
  • [2] A Meshless Simulations for 2D Nonlinear Reaction-diffusion Brusselator System
    Shirzadi, Ahmad
    Sladek, Vladimir
    Sladek, Jan
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 95 (04): : 229 - 252
  • [3] A meshless simulations for 2D nonlinear reaction-diffusion brusselator system
    Shirzadi, Ahmad
    Sladek, Vladimir
    Sladek, Jan
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2013, 95 (04): : 259 - 282
  • [4] Solving the reaction-diffusion Brusselator system using Generalized Finite Difference Method
    Garcia, Angel
    Urena, Francisco
    Vargas, Antonio M.
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 13211 - 13223
  • [5] A New Homotopy Perturbation Method for Solving Two-Dimensional Reaction-Diffusion Brusselator System
    Ayati, Z.
    Biazar, J.
    Ebrahimi, Soodabeh
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (03): : 195 - 203
  • [6] An effective analytical method for fractional Brusselator reaction-diffusion system
    Nisar, Kottakkaran Sooppy
    Jagatheeshwari, R.
    Ravichandran, C.
    Veeresha, P.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18749 - 18758
  • [7] PATTERN FORMATION OF BRUSSELATOR IN THE REACTION-DIFFUSION SYSTEM
    Ji, Yansu
    Shen, Jianwei
    Mao, Xiaochen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4): : 434 - 459
  • [9] A new meshless method of solving 2D fractional diffusion-wave equations
    Du, Hong
    Chen, Zhong
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 130
  • [10] A second-order scheme for the "Brusselator" reaction-diffusion system
    Twizell, EH
    Gumel, AB
    Cao, Q
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 26 (04) : 297 - 316