Solving the reaction-diffusion Brusselator system using Generalized Finite Difference Method

被引:0
|
作者
Garcia, Angel [1 ]
Urena, Francisco [1 ]
Vargas, Antonio M. [2 ]
机构
[1] UNED, Dept Construcc & Fabricac, Madrid, Spain
[2] UNED, Dept Matemat Fundamentales, Madrid, Spain
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 05期
关键词
Brusselator; Generalized Finite Differences; meshless method; convergence;
D O I
10.3934/math.2024644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical solution of the Brusselator system using a meshless method. A numerical scheme is derived employing the formulas of the Generalized Finite Difference Method, and the convergence of the approximate solution to the exact solution is examined. In order to demonstrate the applicability and accuracy of the method, several examples are proposed.
引用
收藏
页码:13211 / 13223
页数:13
相关论文
共 50 条
  • [1] A meshless method for solving the 2D brusselator reaction-diffusion system
    Mohammadi, M.
    Mokhtari, R.
    Schaback, R.
    CMES - Computer Modeling in Engineering and Sciences, 2014, 101 (02): : 113 - 138
  • [2] A Meshless Method for Solving the 2D Brusselator Reaction-Diffusion System
    Mohammadi, M.
    Mokhtari, R.
    Schaback, R.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 101 (02): : 113 - 138
  • [3] Solving a reaction-diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [4] A New Homotopy Perturbation Method for Solving Two-Dimensional Reaction-Diffusion Brusselator System
    Ayati, Z.
    Biazar, J.
    Ebrahimi, Soodabeh
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (03): : 195 - 203
  • [5] An effective analytical method for fractional Brusselator reaction-diffusion system
    Nisar, Kottakkaran Sooppy
    Jagatheeshwari, R.
    Ravichandran, C.
    Veeresha, P.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18749 - 18758
  • [6] PATTERN FORMATION OF BRUSSELATOR IN THE REACTION-DIFFUSION SYSTEM
    Ji, Yansu
    Shen, Jianwei
    Mao, Xiaochen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4): : 434 - 459
  • [7] On the nonstandard finite difference method for reaction-diffusion models
    Pasha, Syed Ahmed
    Nawaz, Yasir
    Arif, Muhammad Shoaib
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [8] On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (03) : 625 - 636
  • [9] On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion
    J. J. Benito
    A. García
    L. Gavete
    M. Negreanu
    F. Ureña
    A. M. Vargas
    Computational Particle Mechanics, 2021, 8 : 625 - 636
  • [10] A second-order scheme for the "Brusselator" reaction-diffusion system
    Twizell, EH
    Gumel, AB
    Cao, Q
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 26 (04) : 297 - 316