Green Computation Offloading With DRL in Multi-Access Edge Computing

被引:0
|
作者
Yin, Changkui [1 ]
Mao, Yingchi [1 ]
Chen, Meng [2 ]
Rong, Yi [1 ]
Liu, Yinqiu [3 ]
He, Xiaoming [4 ]
机构
[1] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[2] SHENZHEN URBAN TRANSPORT PLANNING CTR CO LTD, Shenzhen, Peoples R China
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[4] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing, Peoples R China
关键词
computational task offloading; deep deterministic policy gradients (DDPG); multi-access edge computing;
D O I
10.1002/ett.70003
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In multi-access edge computing (MEC), computational task offloading of mobile terminals (MT) is expected to provide the green applications with the restriction of energy consumption and service latency. Nevertheless, the diverse statuses of a range of edge servers and mobile terminals, along with the fluctuating offloading routes, present a challenge in the realm of computational task offloading. In order to bolster green applications, we present an innovative computational task offloading model as our initial approach. In particular, the nascent model is constrained by energy consumption and service latency considerations: (1) Smart mobile terminals with computational capabilities could serve as carriers; (2) The diverse computational and communication capacities of edge servers have the potential to enhance the offloading process; (3) The unpredictable routing paths of mobile terminals and edge servers could result in varied information transmissions. We then propose an improved deep reinforcement learning (DRL) algorithm named PS-DDPG with the prioritized experience replay (PER) and the stochastic weight averaging (SWA) mechanisms based on deep deterministic policy gradients (DDPG) to seek an optimal offloading mode, saving energy consumption. Next, we introduce an enhanced deep reinforcement learning (DRL) algorithm named PS-DDPG, incorporating the prioritized experience replay (PER) and stochastic weight averaging (SWA) techniques rooted in deep deterministic policy gradients (DDPG). This approach aims to identify an efficient offloading strategy, thereby reducing energy consumption. Fortunately, D4PG$$ {\mathrm{D}}<^>4\mathrm{PG} $$ algorithm is proposed for each MT, which is responsible for making decisions regarding task partition, channel allocation, and power transmission control. Our developed approach achieves the ultimate estimation of observed values and enhances memory via write operations. The replay buffer holds data from previous D$$ D $$ time slots to upgrade both the actor and critic networks, followed by a buffer reset. Comprehensive experiments validate the superior performance, including stability and convergence, of our algorithm when juxtaposed with prior studies.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multi-Relay Assisted Computation Offloading for Multi-Access Edge Computing Systems With Energy Harvesting
    Li, Molin
    Zhou, Xiaobo
    Qiu, Tie
    Zhao, Qinglin
    Li, Keqiu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 10941 - 10956
  • [22] IMOPSOQ: Offloading Dependent Tasks in Multi-access Edge Computing
    Ma, Shuyue
    Song, Shudian
    Yang, Lingyu
    Zhao, Jingmei
    Yang, Feng
    Zhai, Linbo
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 360 - 367
  • [23] Joint Computation Offloading and Data Caching in Multi-Access Edge Computing Enabled Internet of Vehicles
    Liu, Liqing
    Yuan, Xiaoming
    Zhang, Ning
    Chen, Decheng
    Yu, Keping
    Taherkordi, Amir
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14939 - 14954
  • [24] Energy Optimal Partial Computation Offloading Framework for Mobile Devices in Multi-access Edge Computing
    Chouhan, Sonali
    2019 27TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2019, : 419 - 424
  • [25] Graph Attention Network Reinforcement Learning Based Computation Offloading in Multi-Access Edge Computing
    Liu, Yuxuan
    Xia, Geming
    Chen, Jian
    Zhang, Danlei
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 966 - 969
  • [26] On-Request Wireless Charging and Partial Computation Offloading In Multi-Access Edge Computing Systems
    Malik, Rafia
    Vu, Mai
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (10) : 6665 - 6679
  • [27] Dynamic Computation Offloading and Server Deployment for UAV-Enabled Multi-Access Edge Computing
    Ning, Zhaolong
    Yang, Yuxuan
    Wang, Xiaojie
    Guo, Lei
    Gao, Xinbo
    Guo, Song
    Wang, Guoyin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (05) : 2628 - 2644
  • [28] Computation Offloading and Resource Allocation Algorithm for Collaborative LEO Satellite Multi-Access Edge Computing
    Song Z.-Y.
    Hao Y.-Y.
    Sun X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (03): : 567 - 573
  • [29] Computation offloading in cognitive radio NOMA-enabled multi-access edge computing systems
    Nguyen, Chuyen T.
    Quoc-Viet Pham
    Pham, Huong-Giang T.
    Nhu-Ngoc Dao
    Hwang, Won-Joo
    IET COMMUNICATIONS, 2020, 14 (19) : 3404 - 3409
  • [30] Distributed cooperative computation offloading in multi-access edge computing fiber-wireless networks
    Ebrahimzadeh, Amin
    Maier, Martin
    OPTICS COMMUNICATIONS, 2019, 452 : 130 - 139