Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers

被引:2
|
作者
Russo V. [1 ]
Mari A. [1 ]
Shammah N. [1 ]
Larose R. [1 ,2 ]
Zeng W.J. [1 ,3 ]
机构
[1] Unitary Fund, San Francisco, 94104, CA
[2] École Polytechnique Fédérale de Lausanne, Institute of Physics, Lausanne
[3] Goldman Sachs & Co., New York, 10004, NY
关键词
Quantum computing;
D O I
10.1109/TQE.2023.3305232
中图分类号
学科分类号
摘要
We apply quantum error mitigation (QEM) techniques to a variety of benchmark problems and quantum computers to evaluate the performance of QEM in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation, which we call the improvement factor, and calculate this metric for each experiment we perform. The experiments we perform consist of zero-noise extrapolation and probabilistic error cancellation applied to two benchmark problems run on IBM, IonQ, and Rigetti quantum computers, as well as noisy quantum computer simulators. Our results show that error mitigation is, on average, more beneficial than no error mitigation - even when normalized by the additional resources used - but also emphasize that the performance of QEM depends on the underlying computer. © 2020 IEEE.
引用
收藏
相关论文
共 50 条
  • [41] Efficiently improving the performance of noisy quantum computers
    Ferracin, Samuele
    Hashim, Akel
    Ville, Jean-Loup
    Naik, Ravi
    Carignan-Dugas, Arnaud
    Qassim, Hammam
    Morvan, Alexis
    Santiago, David I.
    Siddiqi, Irfan
    Wallman, Joel J.
    QUANTUM, 2024, 8
  • [42] Experimental accreditation of outputs of noisy quantum computers
    Ferracin, Samuele
    Merkel, Seth T.
    McKay, David
    Datta, Animesh
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [43] Parallel quantum chemistry on noisy intermediate-scale quantum computers
    Schade, Robert
    Bauer, Carsten
    Tamoev, Konstantin
    Mazur, Lukas
    Plessl, Christian
    Kuehne, Thomas D.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [44] Testing symmetry on quantum computers
    Laborde, Margarite L.
    Rethinasamy, Soorya
    Wilde, Mark M.
    QUANTUM, 2023, 7
  • [45] Measurement error mitigation in quantum computers through classical bit-flip correction
    Funcke, Lena
    Hartung, Tobias
    Jansen, Karl
    Kuhn, Stefan
    Stornati, Paolo
    Wang, Xiaoyang
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [46] Special Session: Noise Characterization and Error Mitigation in Near-Term Quantum Computers
    Wood, Christopher J.
    2020 IEEE 38TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2020), 2020, : 13 - 16
  • [47] Testing quantum computers with the protocol of quantum state matching
    Ortega, Adrian
    Kalman, Orsolya
    Kiss, Tamas
    PHYSICA SCRIPTA, 2023, 98 (02)
  • [48] Error correction in ensemble registers for quantum repeaters and quantum computers
    Brion, E.
    Pedersen, L. H.
    Saffman, M.
    Molmer, K.
    PHYSICAL REVIEW LETTERS, 2008, 100 (11)
  • [49] Scalable Mitigation of Measurement Errors on Quantum Computers
    Nation, Paul D.
    Kang, Hwajung
    Sundaresan, Neereja
    Gambetta, Jay M.
    PRX QUANTUM, 2021, 2 (04):
  • [50] Advances in Modeling of Noisy Quantum Computers: Spin Qubits in Semiconductor Quantum Dots
    Costa, Davide
    Simoni, Mario
    Piccinini, Gianluca
    Graziano, Mariagrazia
    IEEE ACCESS, 2023, 11 : 98875 - 98913