Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze-Thaw Cycles

被引:0
|
作者
Wang, Rongchang [1 ]
Yang, Zhongnian [1 ]
Ling, Xianzhang [1 ,2 ]
Shi, Wei [1 ]
Sun, Zhenxing [1 ]
Qin, Xipeng [2 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266520, Peoples R China
[2] Harbin Inst Technol, Sch Civil Engn, Harbin 150006, Peoples R China
基金
中国国家自然科学基金;
关键词
freeze-thaw cycle; rubber fiber; expansive soil; elastic modulus; damage constitutive model; MECHANICAL-PROPERTIES; SHEAR-STRENGTH; TIRE RUBBER; COMPRESSIVE STRENGTH; SWELLING BEHAVIOR; CLAYEY SOILS;
D O I
10.3390/ma17204979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To elucidate the degradation mechanism of expansive soil-rubber fiber (ESR) under freeze-thaw cycles, freeze-thaw cycle tests and consolidated undrained tests were conducted on the saturated ESR. The study quantified the elastic modulus and damage variables of ESR under different numbers of freeze-thaw cycles and confining pressure, and proposed a damage constitutive model for ESR. The primary findings indicate that: (1) The effective stress paths of ESR exhibit similarity across different numbers of freeze-thaw cycles, the critical stress ratio slightly decreased by 8.8%, while the normalized elastic modulus experienced a significant reduction, dropping to 42.1%. (2) When considering the damage threshold, the shear process of ESR can be divided into three stages: weak damage, damage development, and failure. As strain increases, the microdefects of ESR gradually develop, penetrating macroscopic cracks and converging to form the main rupture surface. Eventually, the damage value reaches 1. (3) Due to the effect of freeze-thaw cycles, initial damage exists for ESR, which is positively correlated with the number of freeze-thaw cycles. The rubber fibers act as tensile elements, and the ESR damage evolution curves intersect one after another, showing obvious plastic characteristics in the late stage of shear. (4) Confining pressure plays a role in limiting the development of ESR microcracks. The damage deterioration of ESR decreases with an increase in confining pressure, leading to an increase in ESR strength. (5) Through a comparison of the test curve and the theoretical curve, this study validates the rationality of the damage constitutive model of ESR under established freeze-thaw cycles. Furthermore, it accurately describes the nonlinear impact of freeze-thaw cycles and confining pressure on the ESR total damage.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Effect of Freeze-Thaw Cycles on Triaxial Strength Properties of Fiber-Reinforced Clayey Soil
    Orakoglu, Muge Elif
    Liu, Jiankun
    KSCE JOURNAL OF CIVIL ENGINEERING, 2017, 21 (06) : 2128 - 2140
  • [12] Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil
    Liu, Chao
    Lv, Yaru
    Yu, Xiaojuan
    Wu, Xun
    GEOTEXTILES AND GEOMEMBRANES, 2020, 48 (04) : 581 - 590
  • [13] Mechanism of Strength Degradation of Fiber-Reinforced Soil Under Freeze-Thaw Conditions
    Yu, Xiaojuan
    Wu, Xingyu
    Zhu, Peng
    Liu, Chao
    Qiu, Chengchun
    Cai, Zhongbing
    BUILDINGS, 2025, 15 (06)
  • [14] Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles
    Chen C.
    Guo W.
    Ren Y.-X.
    Guo, Wei (guow@tju.edu.cn), 2020, Chinese Society of Civil Engineering (42): : 135 - 140
  • [15] Fiber-reinforced polymer bars under freeze-thaw cycles and different loading rates
    Koller, Renee
    Chang, Sunyoung
    Xi, Yunping
    JOURNAL OF COMPOSITE MATERIALS, 2007, 41 (01) : 5 - 25
  • [16] A Damage Model of Concrete under Freeze-Thaw Cycles
    卫军
    JournalofWuhanUniversityofTechnology-MaterialsScience, 2003, (03) : 40 - 42
  • [17] A damage model of concrete under freeze-thaw cycles
    Wei Jun
    Wu Xing-hao
    Zhao Xiao-long
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2003, 18 (3): : 40 - 42
  • [18] A damage model of concrete under freeze-thaw cycles
    Wei, J
    Wu, XH
    Zhao, XL
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2003, 18 (03): : 40 - 42
  • [19] The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced
    Ghazavi, Mahmoud
    Roustaie, Mahya
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2010, 61 (2-3) : 125 - 131
  • [20] Strength degradation characteristics and damage constitutive model of sandstone under freeze-thaw cycles
    Wang, Zhongwen
    Yu, Meilu
    Wang, Lei
    Xie, Haotian
    Xu, Ying
    Wang, Luyu
    SCIENTIFIC REPORTS, 2024, 14 (01):