On the equivalence of the upper open irredundance and fractional upper open irredundance numbers of a graph
被引:0
|
作者:
机构:
[1] Fricke, Gerd H.
[2] O'Brien, Tim
[3] Schroeder, Chris
[4] Hedetniemi, Stephen T.
来源:
|
1600年
/
Charles Babbage Research Centre卷
/
99期
关键词:
Cardinalities - Graph G - Irredundance number - Real-valued functions;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A set S ⊂ K of vertices in a graph G = (V, E) is called open irredundant if for every vertex ν ∈ S there exists a vertex w ∈ V S such that w is adjacent to ν but to no other vertex in S. The upper open irredundance number OIR(G) equals the maximum cardinality of an open irredundant set in G. A real-valued function g : V → [0,1] is called open irredundant if for every vertex ν ∈ V, g(ν) > 0 implies there exists a vertex w adjacent to ν such that g(N[w]) = 1. An open irredundant function g is maximal if there does not exist an open irredundant function h such that g ≠ h and g(ν) ≤ h(ν), for every ν S V. The fractional upper open irredundance number equals OIRf(G) = sup{|g| : g is an open irredundant function on G}. In this paper we prove that for any graph G, OIR(G) = OIRf(G).
机构:
Shanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai, Peoples R ChinaShanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai, Peoples R China
Chen, Hao
Wang, Yu Guang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai, Peoples R China
Univ New South Wales, Sch Math & Stat, Kensigton, Australia
Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Shanghai 201210, Peoples R ChinaShanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai, Peoples R China
Wang, Yu Guang
Xiong, Huan
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Inst Adv Study Math, Harbin, Peoples R ChinaShanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai, Peoples R China