Morse index and blow-up points of solutions of some nonlinear problems
被引:0
|
作者:
El Mehdi, Khalil
论文数: 0引用数: 0
h-index: 0
机构:
Département de Mathématiques, Faculté des Sciences de Bizerte, Jarzouna 7021 - Bizerte, TunisiaDépartement de Mathématiques, Faculté des Sciences de Bizerte, Jarzouna 7021 - Bizerte, Tunisia
El Mehdi, Khalil
[1
]
Pacella, Filomena
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Matematica G. Castelnuovo, Università degli Studi di Roma La Sapienza, Piazzale A. Moro, 2, 00185 Roma, ItalyDépartement de Mathématiques, Faculté des Sciences de Bizerte, Jarzouna 7021 - Bizerte, Tunisia
Pacella, Filomena
[2
]
机构:
[1] Département de Mathématiques, Faculté des Sciences de Bizerte, Jarzouna 7021 - Bizerte, Tunisia
[2] Dipartimento di Matematica G. Castelnuovo, Università degli Studi di Roma La Sapienza, Piazzale A. Moro, 2, 00185 Roma, Italy
In this Note we consider the following problem & presented equcation; where Ω is a bounded smooth starshaped domain in N, N ≥ 3, pΕ = N+2/N-2 - Ε, Ε > 0, and λ ≥ 0. We prove that if uΕ is a solution of Morse index m > 0 than u cannot have more than m maximum points in Ω for Ε sufficiently small. Moreover if Ω is convex we prove that any solution of index one has only one critical point and the level sets are starshaped for Ε sufficiently small.