Better representations: Invariant, disentangled and reusable

被引:0
|
作者
Montavon, Grégoire [1 ]
Müller, Klaus-Robert [1 ,2 ]
机构
[1] Montavon, Grégoire
[2] 1,Müller, Klaus-Robert
来源
Montavon, G. (gregoire.montavon@tu-berlin.de) | 1600年 / Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany卷 / 7700 LECTURE NO期
关键词
10;
D O I
10.1007/978-3-642-35289-8-29
中图分类号
学科分类号
摘要
引用
收藏
页码:559 / 560
相关论文
共 50 条
  • [41] Towards Learning Disentangled Representations for Time Series
    Li, Yuening
    Chen, Zhengzhang
    Zha, Daochen
    Du, Mengnan
    Ni, Jingchao
    Zhang, Denghui
    Chen, Haifeng
    Hu, Xia
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 3270 - 3278
  • [42] Learning Disentangled Joint Continuous and Discrete Representations
    Dupont, Emilien
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [43] Disentangled contrastive learning for fair graph representations
    Zhang, Guixian
    Yuan, Guan
    Cheng, Debo
    Liu, Lin
    Li, Jiuyong
    Zhang, Shichao
    NEURAL NETWORKS, 2025, 181
  • [44] KNOWLEDGE ROUTER: Learning Disentangled Representations for Knowledge Graphs
    Zhang, Shuai
    Rao, Xi
    Tay, Yi
    Zhang, Ce
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 1 - 10
  • [45] A sober look at the unsupervised learning of disentangled representations and their evaluation
    Locatello, Francesco
    Bauer, Stefan
    Lucic, Mario
    Rätsch, Gunnar
    Gelly, Sylvain
    Schölkopf, Bernhard
    Bachem, Olivier
    Journal of Machine Learning Research, 2020, 21
  • [46] Temporal Consistency Objectives Regularize the Learning of Disentangled Representations
    Valvano, Gabriele
    Chartsias, Agisilaos
    Leo, Andrea
    Tsaftaris, Sotirios A.
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER AND MEDICAL IMAGE LEARNING WITH LESS LABELS AND IMPERFECT DATA, DART 2019, MIL3ID 2019, 2019, 11795 : 11 - 19
  • [47] A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
    Locatello, Francesco
    Bauer, Stefan
    Lucic, Mario
    Ratsch, Gunnar
    Gelly, Sylvain
    Schoelkopf, Bernhard
    Bachem, Olivier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [48] Learning disentangled representations for controllable human motion prediction
    Gu, Chunzhi
    Yu, Jun
    Zhang, Chao
    PATTERN RECOGNITION, 2024, 146
  • [49] Learning disentangled representations via product manifold projection
    Fumero, Marco
    Cosmo, Luca
    Melzi, Simone
    Rodola, Emanuele
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [50] Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
    Stuhmer, Jan
    Turner, Richard E.
    Nowozin, Sebastian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108