Better representations: Invariant, disentangled and reusable

被引:0
|
作者
Montavon, Grégoire [1 ]
Müller, Klaus-Robert [1 ,2 ]
机构
[1] Montavon, Grégoire
[2] 1,Müller, Klaus-Robert
来源
Montavon, G. (gregoire.montavon@tu-berlin.de) | 1600年 / Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany卷 / 7700 LECTURE NO期
关键词
10;
D O I
10.1007/978-3-642-35289-8-29
中图分类号
学科分类号
摘要
引用
收藏
页码:559 / 560
相关论文
共 50 条
  • [1] On the Fairness of Disentangled Representations
    Locatello, Francesco
    Abbati, Gabriele
    Rainforth, Tom
    Bauer, Stefan
    Scholkopf, Bernhard
    Bachem, Olivier
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Disentangled behavioral representations
    Dezfouli, Amir
    Ashtiani, Hassan
    Ghattas, Omar
    Nock, Richard
    Dayan, Peter
    Ong, Cheng Soon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] On Causally Disentangled Representations
    Reddy, Abbavaram Gowtham
    Benin, Godfrey L.
    Balasubramanian, Vineeth N.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8089 - 8097
  • [4] Structured Disentangled Representations
    Esmaeili, Babak
    Wu, Hao
    Jain, Sarthak
    Bozkurt, Alican
    Siddharth, N.
    Paige, Brooks
    Brooks, Dana H.
    Dy, Jennifer
    van de Meent, Jan-Willem
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [5] Towards Disentangled Speech Representations
    Peyser, Cal
    Huang, Ronny
    Rosenberg, Andrew
    Sainath, Tara N.
    Picheny, Michael
    Cho, Kyunghyun
    INTERSPEECH 2022, 2022, : 3603 - 3607
  • [6] Learning Disentangled Representations for Recommendation
    Ma, Jianxin
    Zhou, Chang
    Cui, Peng
    Yang, Hongxia
    Zhu, Wenwu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Disentangled representations for causal cognition
    Torresan, Filippo
    Baltieri, Manuel
    PHYSICS OF LIFE REVIEWS, 2024, 51 : 343 - 381
  • [8] Learning Disentangled Discrete Representations
    Friede, David
    Reimers, Christian
    Stuckenschmidt, Heiner
    Niepert, Mathias
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 593 - 609
  • [9] Domain Agnostic Learning with Disentangled Representations
    Peng, Xingchao
    Huang, Zijun
    Sun, Ximeng
    Saenko, Kate
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [10] Learning Disentangled Representations of Negation and Uncertainty
    Vasilakes, Jake
    Zerva, Chrysoula
    Miwa, Makoto
    Ananiadou, Sophia
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 8380 - 8397