PolyGNN: Polyhedron-based graph neural network for 3D building reconstruction from point clouds

被引:1
|
作者
Chen, Zhaiyu [1 ]
Shi, Yilei [2 ]
Nan, Liangliang [3 ]
Xiong, Zhitong
Zhu, Xiao Xiang [1 ,4 ]
机构
[1] Tech Univ Munich, Chair Data Sci Earth Observat, D-80333 Munich, Germany
[2] Tech Univ Munich, Sch Engn & Design, D-80333 Munich, Germany
[3] Delft Univ Technol, Urban Data Sci, NL-2628 BL Delft, Netherlands
[4] Munich Ctr Machine Learning, D-80333 Munich, Germany
关键词
3D reconstruction; Building model; Graph neural network; Point cloud; Polyhedron; MODELS; SHAPE; SET;
D O I
10.1016/j.isprsjprs.2024.09.031
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We present PolyGNN, a polyhedron-based graph neural network for 3D building reconstruction from point clouds. PolyGNN learns to assemble primitives obtained by polyhedral decomposition via graph node classification, achieving a watertight and compact reconstruction. To effectively represent arbitrary-shaped polyhedra in the neural network, we propose a skeleton-based sampling strategy to generate polyhedron-wise queries. These queries are then incorporated with inter-polyhedron adjacency to enhance the classification. PolyGNN is end-to-end optimizable and is designed to accommodate variable-size input points, polyhedra, and queries with an index-driven batching technique. To address the abstraction gap between existing city-building models and the underlying instances, and provide a fair evaluation of the proposed method, we develop our method on a large-scale synthetic dataset with well-defined ground truths of polyhedral labels. We further conduct a transferability analysis across cities and on real-world point clouds. Both qualitative and quantitative results demonstrate the effectiveness of our method, particularly its efficiency for large-scale reconstructions. The source code and data are available at https://github.com/chenzhaiyu/polygnn.
引用
收藏
页码:693 / 706
页数:14
相关论文
共 50 条
  • [31] MSGCN: a multiscale spatio graph convolution network for 3D point clouds
    Bo Wu
    Bo Lang
    Multimedia Tools and Applications, 2023, 82 : 35949 - 35968
  • [32] MSGCN: a multiscale spatio graph convolution network for 3D point clouds
    Wu, Bo
    Lang, Bo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 35949 - 35968
  • [33] Semantic Graph Based Place Recognition for 3D Point Clouds
    Kong, Xin
    Yang, Xuemeng
    Zhai, Guangyao
    Zhao, Xiangrui
    Zeng, Xianfang
    Wang, Mengmeng
    Liu, Yong
    Li, Wanlong
    Wen, Feng
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8216 - 8223
  • [34] Efficient graph attentional network for 3D object detection from Frustum-based LiDAR point clouds
    Liang, Zhenming
    Huang, Yingping
    Liu, Zhenwei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 89
  • [35] Graph-Based Point Tracker for 3D Object Tracking in Point Clouds
    Park, Minseong
    Seong, Hongje
    Jang, Wonje
    Kim, Euntai
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2053 - 2061
  • [36] 3D convolutional neural network for semantic scene segmentation based on unstructured point clouds
    Zhang R.
    Wang Y.
    Li G.
    Han Z.
    Li J.
    Li C.
    International Journal of Performability Engineering, 2018, 14 (07) : 1503 - 1512
  • [37] 3D Surface Reconstruction of Noisy Point Clouds Using Growing Neural Gas: 3D Object/Scene Reconstruction
    Sergio Orts-Escolano
    Jose Garcia-Rodriguez
    Vicente Morell
    Miguel Cazorla
    Jose Antonio Serra Perez
    Alberto Garcia-Garcia
    Neural Processing Letters, 2016, 43 : 401 - 423
  • [38] 3D Surface Reconstruction of Noisy Point Clouds Using Growing Neural Gas: 3D Object/Scene Reconstruction
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    Morell, Vicente
    Cazorla, Miguel
    Serra Perez, Jose Antonio
    Garcia-Garcia, Alberto
    NEURAL PROCESSING LETTERS, 2016, 43 (02) : 401 - 423
  • [39] Points2Model: a neural-guided 3D building wireframe reconstruction from airborne LiDAR point clouds
    Akwensi, Perpetual Hope
    Bharadwaj, Akshay
    Wang, Ruisheng
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2025, 18 (01)
  • [40] Rock Discontinuities Identification from 3D Point Clouds Using Artificial Neural Network
    Ge, Yunfeng
    Cao, Bei
    Tang, Huiming
    ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (03) : 1705 - 1720