Heterogeneous Domain Decomposition Methods for Eddy Current Problems

被引:0
|
作者
机构
[1] Rodríguez, Ana Alonso
来源
Rodríguez, A. A. (alonso@science.unitn.it) | 1600年 / Springer Verlag卷 / 91期
关键词
Electric fields - Numerical methods - Iterative methods;
D O I
10.1007/978-3-642-35275-1_9
中图分类号
学科分类号
摘要
The usual setting of an eddy current problem distinguishes between a conducting region and an air region (non-conducting) surrounding the conductor. For the numerical approximation of this heterogeneous problem it is very natural to use iterative substructuring methods based on transmission conditions at the interface. We analyze the convergence of the Dirichlet-Neumann iterative method for two different formulations of the eddy current problem: the one that consider as main unknown the electric field and the one based on the magnetic field. © Springer-Verlag Berlin Heidelberg 2013.
引用
收藏
相关论文
共 50 条
  • [21] DOMAIN DECOMPOSITION METHODS FOR PROBLEMS WITH PARTIAL REFINEMENT
    BRAMBLE, JH
    EWING, RE
    PARASHKEVOV, RR
    PASCIAK, JE
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (01): : 397 - 410
  • [23] Domain decomposition methods in electrothermomechanical coupling problems
    Hoppe, RHW
    Iliash, Y
    Ramminger, S
    Wachutka, G
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 387 - 394
  • [24] On domain decomposition methods for grid parabolic problems
    Laevsky, YM
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1998, 13 (05) : 389 - 403
  • [25] Domain decomposition and multigrid methods for obstacle problems
    Tai, XC
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 345 - 352
  • [26] Domain decomposition methods for wave propagation in heterogeneous media
    Glowinski, R.
    Lapin, S.
    Periaux, J.
    Jacquart, P. M.
    Chen, H. Q.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 1203 - +
  • [27] Foundations of volume integral methods for eddy current problems
    Passarotto, Mauro
    Pitassi, Silvano
    Specogna, Ruben
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [28] Solution of the 2-D Eddy Current Problem via the Domain Decomposition Methods on Serial and Parallel Computers
    Lavers, J. D.
    Boglaev, I. P.
    Sirotkin, V. V.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 1994, 319
  • [29] Fuzzy Domain Decomposition: A New Perspective on Heterogeneous DD Methods
    Gander, Martin J.
    Michaud, Jerome
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 265 - 273
  • [30] Domain decomposition methods and non-linear problems
    Escaig, Y
    Marin, P
    ADVANCES IN COMPUTATIONAL STRUCTURES TECHNOLOGY, 1996, : 281 - 287