A survey of occlusion detection method for visual object

被引:0
|
作者
Zhang S. [1 ,2 ]
He H. [1 ]
Liu J. [1 ]
Zhang Y. [1 ]
Pang Y. [1 ]
Sang Y. [1 ]
机构
[1] School of Information Science and Engineering, Yanshan University, Qinhuangdao
[2] The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao
来源
Zhang, Shihui (sshhzz@ysu.edu.cn) | 1600年 / Inst. of Scientific and Technical Information of China卷 / 22期
基金
中国国家自然科学基金;
关键词
Depth image; Intensity image; Occlusion detection; Visual object;
D O I
10.3772/j.issn.1006-6748.2016.03.004
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Occlusion problem is one of the challenging issues in vision field for a long time, and the occlusion phenomenon of visual object will be involved in many vision research fields. Once the occlusion occurs in a visual system, it will affect the effects of object recognition, tracking, observation and operation, so detecting occlusion autonomously should be one of the abilities for an intelligent vision system. The research on occlusion detection method for visual object has increasingly attracted attentions of scholars. First, the definition and classification of the occlusion problem are presented. Then, the characteristics and deficiencies of the occlusion detection methods based on the intensity image and the depth image are analyzed respectively, and the existing occlusion detection methods are compared. Finally, the problems of existing occlusion detection methods and possible research directions are pointed out. Copyright © by HIGH TECHNOLOGY LETTERS PRESS.
引用
收藏
页码:256 / 265
页数:9
相关论文
共 50 条
  • [21] Survey of pedestrian detection with occlusion
    Chen Ning
    Li Menglu
    Yuan Hao
    Su Xueping
    Li Yunhong
    Complex & Intelligent Systems, 2021, 7 : 577 - 587
  • [22] Occlusion detection and drift-avoidance framework for 2D visual object tracking
    Karakostas, Iason
    Mygdalis, Vasileios
    Tefas, Anastasios
    Pitas, Ioannis
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90 (90)
  • [23] Siamese Visual Object Tracking: A Survey
    Ondrasovic, Milan
    Tarabek, Peter
    IEEE ACCESS, 2021, 9 : 110149 - 110172
  • [24] Visual Object Detection: A Review
    Wang, Zuyi
    Jiao, Bowen
    Xu, Li
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7106 - 7112
  • [25] A visual tracking method via object detection based on deep learning
    Tang C.
    Ling Y.
    Yang H.
    Yang X.
    Zheng C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2018, 47 (05):
  • [26] Object Class Detection: A Survey
    Zhang, Xin
    Yang, Yee-Hong
    Han, Zhiguang
    Wang, Hui
    Gao, Chao
    ACM COMPUTING SURVEYS, 2013, 46 (01)
  • [27] Object Detection and Tracking - A Survey
    Reddy, K. Rasool
    Priya, K. Hari
    Neelima, N.
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 418 - 421
  • [28] Confusing Object Detection: A Survey
    Tong, Kunkun
    Zou, Guchu
    Tan, Xin
    Gong, Jingyu
    Qi, Zhenyi
    Zhang, Zhizhong
    Xie, Yuan
    Ma, Lizhuang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 3421 - 3461
  • [29] Salient object detection: A survey
    Borji, Ali
    Cheng, Ming-Ming
    Hou, Qibin
    Jiang, Huaizu
    Li, Jia
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) : 117 - 150
  • [30] Salient object detection: A survey
    Ali Borji
    Ming-Ming Cheng
    Qibin Hou
    Huaizu Jiang
    Jia Li
    Computational Visual Media, 2019, 5 : 117 - 150