The angular densities and bound of fractal sets

被引:0
|
作者
Wang, C.-X. [1 ]
机构
[1] Dept. of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
3
引用
收藏
页码:327 / 330
相关论文
共 50 条
  • [31] ARE TOPOGRAPHIC DATA SETS FRACTAL
    GILBERT, LE
    PURE AND APPLIED GEOPHYSICS, 1989, 131 (1-2) : 241 - 254
  • [32] Intersections of moving fractal sets
    Mandre, I.
    Kalda, J.
    EPL, 2013, 103 (01)
  • [33] Fractal sets in control systems
    Cheng, Daizhan
    Applied Mathematics and Mechanics (English Edition), 1993, 14 (08) : 735 - 744
  • [34] CONTINUATION PROBLEM AND FRACTAL SETS
    Kabanikhin, S. I.
    Bektemesov, M. A.
    Shishlenin, M. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C97 - C103
  • [35] Diffusion in a Class of Fractal Sets
    Datta, Dhurjati Prasad
    Raut, Santanu
    Chaudhuri, Anuja Ray
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2012, 30 (06): : 37 - 50
  • [36] FRACTAL SETS IN CONTROL SYSTEMS
    程代展
    Applied Mathematics and Mechanics(English Edition), 1993, (08) : 735 - 744
  • [37] Characterizing riddled fractal sets
    Lai, YC
    Grebogi, C
    PHYSICAL REVIEW E, 1996, 53 (02): : 1371 - 1374
  • [38] ON FRACTAL DIMENSION OF INVARIANT SETS
    Mirzaie, R.
    MATHEMATICAL REPORTS, 2011, 13 (04): : 377 - 384
  • [39] Orthogonal Decomposition of Fractal Sets
    Kocic, Ljubisa M.
    Gegovska-Zajkova, Sonja
    Babace, Elena
    APPROXIMATION AND COMPUTATION: IN HONOR OF GRADIMIR V. MILOVANOVIC, 2011, 42 : 145 - +
  • [40] Fundamental sets of fractal functions
    Navascues, M. A.
    Chand, A. K. B.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 100 (03) : 247 - 261