Analytical temperature model for spindle speed selection in additive friction stir deposition

被引:0
|
作者
Schmitz, Tony [1 ,2 ]
Charles, Elijah [1 ]
Compton, Brett [1 ]
机构
[1] Univ Tennessee, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN 37932 USA
关键词
Additive manufacturing; additive friction stir deposition; temperature; FORCES;
D O I
10.1016/j.mfglet.2024.09.090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes a physics-based, analytical model for additive friction stir deposition (AFSD) spindle speed selection to achieve a desired deposition temperature. In the model, power input to the feedstock, which enables plastic flow and deposition, is related to the material temperature rise and subsequent flow stress reduction using Fourier's conduction rate equation. Power input is modeled as frictional heating at the deposit-surface interface and adiabatic heating due to plastic deformation. The flow stress is predicted using the strain, strain rate, and temperature-dependent Johnson-Cook constitutive model for the selected feedstock alloy. Model predictions are compared to AFSD numerical simulation results available in the literature and experiments for aluminum alloys. (c) 2024 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc- nd/4.0)
引用
收藏
页码:720 / 729
页数:10
相关论文
共 50 条
  • [21] Embedded QR code for part authentication in additive friction stir deposition
    Schmitz, Tony
    Costa, Lino
    Canfield, Brian K.
    Kincaid, Joshua
    Zameroski, Ross
    Garcia, Ryan
    Frederick, Curtis
    Rossy, Andres Marquez
    Moeller, Trevor M.
    MANUFACTURING LETTERS, 2023, 35 : 16 - 19
  • [22] Additive friction stir deposition induced stress ripples in aluminum alloy
    Jin, Yuqi
    Yang, Teng
    Wang, Tianhao
    Dowden, Shelden
    Dahotre, Narendra B.
    Neogi, Arup
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (5-6): : 2435 - 2443
  • [23] A Review on Solid-State-Based Additive Friction Stir Deposition
    Dong, Hongrui
    Li, Xiaoqiang
    Xu, Ke
    Zang, Zhenyu
    Liu, Xin
    Zhang, Zongjiang
    Xiao, Wenlong
    Li, Yong
    AEROSPACE, 2022, 9 (10)
  • [24] Process planning for hybrid manufacturing using additive friction stir deposition
    Kincaid, Joshua
    Charles, Elijah
    Garcia, Ryan
    Dvorak, Jake
    No, Timothy
    Smith, Scott
    Schmitz, Tony
    MANUFACTURING LETTERS, 2023, 37 : 26 - 31
  • [25] Additive friction stir deposition: a review on processes, parameters, characteristics, and applications
    Li, Xia
    Li, Xiaoliang
    Hu, Shenheng
    Liu, Yubing
    Ma, Diao
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (3-4): : 1111 - 1128
  • [26] AFSD-Nets: A Physics-Informed Machine Learning Model for Predicting the Temperature Evolution During Additive Friction Stir Deposition
    Shi, Tony
    Wu, Jiajie
    Ma, Mason
    Charles, Elijah
    Schmitz, Tony
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (08):
  • [27] The Effect of Temper Condition and Feeding Speed on the Additive Manufacturing of AA2011 Parts Using Friction Stir Deposition
    Ahmed, Mohamed M. Z.
    Seleman, Mohamed M. El-Sayed
    Elfishawy, Ebtessam
    Alzahrani, Bandar
    Touileb, Kamel
    Habba, Mohamed I. A.
    MATERIALS, 2021, 14 (21)
  • [28] iSTIR -: Analytical thermal model for friction stir welding
    Vilaça, P
    Quintino, L
    dos Santos, JF
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 169 (03) : 452 - 465
  • [29] An analytical model for the heat generation in friction stir welding
    Schmidt, H
    Hattel, J
    Wert, J
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (01) : 143 - 157
  • [30] Non-beam-based metal additive manufacturing enabled by additive friction stir deposition
    Yu, Hang Z.
    Jones, Mackenzie E.
    Brady, George W.
    Griffiths, R. Joey
    Garcia, David
    Rauch, Hunter A.
    Cox, Chase D.
    Hardwick, Nanci
    SCRIPTA MATERIALIA, 2018, 153 : 122 - 130