Graspy: Graph statistics in python

被引:0
|
作者
Chung, Jaewon [1 ]
Pedigo, Benjamin D. [1 ]
Bridgeford, Eric W. [2 ]
Varjavand, Bijan K. [1 ]
Helm, Hayden S. [3 ]
Vogelstein, Joshua T. [1 ,3 ,4 ]
机构
[1] Department of Biomedical Engineering, Johns Hopkins University, Baltimore,MD,21218, United States
[2] Department of Biostatistics, Johns Hopkins University, Baltimore,MD,21218, United States
[3] Center for Imaging Science, Johns Hopkins University, Baltimore,MD,21218, United States
[4] Kavli Neuroscience Discovery Institute, Institute for Computational Medicine, Johns Hopkins University, Baltimore,MD,21218, United States
来源
关键词
Graph analysis - Graph statistics - Open source license - [!text type='Python']Python[!/text] - Random graphs - Statistical inference;
D O I
暂无
中图分类号
学科分类号
摘要
19
引用
收藏
相关论文
共 50 条
  • [41] NeuralKG-ind: A Python']Python Library for Inductive Knowledge Graph Representation Learning
    Zhang, Wen
    Yao, Zhen
    Chen, Mingyang
    Huang, Zhiwei
    Chen, Huajun
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 3140 - 3144
  • [42] Developing Gato and CATBox with Python']Python:: Teaching graph algorithms through visualization and experimentation
    Schliep, A
    Hochstättler, W
    MULTIMEDIA TOOLS FOR COMMUNICATING MATHEMATICS, 2002, : 291 - 309
  • [43] Predicting Type Annotations for Python']Python using Embeddings from Graph Neural Networks
    Ivanov, Vladimir
    Romanov, Vitaly
    Succi, Giancarlo
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 548 - +
  • [44] graphkit-learn: A Python']Python library for graph kernels based on linear patterns
    Jia, Linlin
    Gauzere, Benoit
    Honeine, Paul
    PATTERN RECOGNITION LETTERS, 2021, 143 : 113 - 121
  • [45] Graph Scan Statistics With Uncertainty
    Cadena, Jose
    Basak, Arinjoy
    Vullikanti, Anil
    Deng, Xinwei
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2771 - 2778
  • [46] ASYMPTOTIC NORMALITY OF GRAPH STATISTICS
    NOWICKI, K
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 21 (02) : 209 - 222
  • [47] Practical Statistics for Data Scientists: 50+Essential Concepts Using R and Python']Python
    Chen, Li-Pang
    TECHNOMETRICS, 2021, 63 (02) : 272 - 273
  • [48] PYCIRCULARSTATS: A PYTHON']PYTHON-BASED TOOL FOR REMOTE SENSING CIRCULAR STATISTICS AND GRAPHICAL ANALYSIS
    Cuartero, A.
    Paoletti, Mercedes E.
    Garcia-Rodriguez, P.
    Haut, Juan M.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2876 - 2879
  • [49] Conflict-aware Inference of Python']Python Compatible Runtime Environments with Domain Knowledge Graph
    Cheng, Wei
    Zhu, Xiangrong
    Hu, Wei
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 451 - 461
  • [50] Graph-Based Fault Localization in Python']Python Projects with Class-Imbalanced Learning
    Kulkarni, Apoorva Anand
    Niranjan, Divya G.
    Saju, Noel
    Shenoy, P. Rakshith
    Arya, Arti
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 354 - 368