Dynamical stability of Hamiltonian systems

被引:0
|
作者
Cheng, Chongqing [1 ]
Cheng, Jian [1 ]
机构
[1] Department of Mathematics, Nanjing University, Nanjing 210093, China
关键词
System stability;
D O I
暂无
中图分类号
N94 [系统科学]; C94 [];
学科分类号
0711 ; 081103 ; 1201 ;
摘要
Dynamical stability has become the center of study on Hamiltonian system. In this article we introduce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnold diffusion and non-singular collision of n-body problem.
引用
收藏
页码:347 / 349
相关论文
共 50 条
  • [21] Dynamical reduced basis methods for Hamiltonian systems
    Pagliantini, Cecilia
    NUMERISCHE MATHEMATIK, 2021, 148 (02) : 409 - 448
  • [22] Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems
    Alexander Figotin
    Jeffrey H. Schenker
    Journal of Statistical Physics, 2007, 128 : 969 - 1056
  • [23] Bifurcations and dynamical evolution of eigenvalues of Hamiltonian systems
    Hsiao, FY
    Scheeres, DJ
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (01) : 66 - 75
  • [24] Design of dynamical controllers for electromechanical Hamiltonian systems
    Haas, W
    Schlacher, K
    ROBUST CONTROL DESIGN 2000, VOLS 1 & 2, 2000, 1-2 : 763 - 768
  • [25] Dynamical reduced basis methods for Hamiltonian systems
    Cecilia Pagliantini
    Numerische Mathematik, 2021, 148 : 409 - 448
  • [26] Hamiltonian formalism for fiberwise linear dynamical systems
    Espinoza, RF
    Vorobjev, Y
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2000, 6 (02): : 213 - 234
  • [27] Towards a dynamical temperature of finite Hamiltonian systems
    Yan, Shiwei
    Wang, Qi
    Liu, Shengjun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (24) : 4943 - 4949
  • [28] Λ-symmetries of dynamical systems, Hamiltonian and Lagrangian equations
    Cicogna, Giampaolo
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 47 - 60
  • [29] The number of limit cycles in dynamical systems close to Hamiltonian systems
    Medvedev, VS
    Fedorov, EL
    DIFFERENTIAL EQUATIONS, 1996, 32 (08) : 1146 - 1148
  • [30] BI-HAMILTONIAN DYNAMICAL-SYSTEMS AND THE QUADRATIC-HAMILTONIAN THEOREM
    MARMO, G
    SALETAN, EJ
    SCHMID, R
    SIMONI, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 100 (03): : 297 - 317