Multi-Scale Structural Graph Convolutional Network for Skeleton-Based Action Recognition

被引:10
|
作者
Jang, Sungjun [1 ]
Lee, Heansung [1 ]
Kim, Woo Jin [2 ]
Lee, Jungho [1 ]
Woo, Sungmin [1 ]
Lee, Sangyoun [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[2] Samsung Elect Co Ltd, MX Div, Suwon 16677, South Korea
关键词
Topology; Feature extraction; Correlation; Convolutional neural networks; Convolution; Network topology; Adaptation models; Skeleton-based action recognition; graph convolutional network; link prediction; ATTENTION;
D O I
10.1109/TCSVT.2024.3375512
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graph convolutional networks (GCNs) have attracted considerable interest in skeleton-based action recognition. Existing GCN-based models have proposed methods to learn dynamic graph topologies generated from the feature information of vertices to capture inherent relationships. However, these models have two main limitations. Firstly, they struggle to effectively utilize high-dimensional or structural information, which limits their capacity for feature representation and consequently hinders performance improvement. Secondly, among these models, the multi-scale methods that aggregate information at different scales often over-capture unnecessary relationships between vertices. This leads to an over-smoothing problem where smoothed features are extracted, making it difficult to distinguish the features of each vertex. To address these limitations, we propose the multi-scale structural graph convolutional network (MSS-GCN) for skeleton-based action recognition. Within the MSS-GCN framework, the common intersection graph convolution (CI-GC) leverages the overlapped neighbor information, indicating the overlap between neighboring vertices for a given pair of root vertices. The graph topology of CI-GC is designed to compute the structural correlation between neighboring vertices corresponding to each hop, thereby enriching the context of inter-vertex relationships. Then, our proposed multi-scale spatio-temporal modeling aggregates local-global features to provide a comprehensive representation. In addition, we propose a Graph Weight Annealing (GWA) method, which is a graph scheduling method to mitigate the over-smoothing caused by multi-scale aggregation. By varying the importance between a vertex and its neighbors, we demonstrate that the over-smoothing problem can be effectively mitigated. Moreover, our proposed GWA method can easily be adapted to different GCN models to enhance performance. Combining the MSS-GCN model and the GWA method, we propose a powerful feature extractor that effectively classifies actions for skeleton-based action recognition in various datasets. We evaluate our approach on three benchmark datasets: NTU RGB+D, NTU RGB+D 120, and NW-UCLA. The proposed MSS-GCN achieves state-of-the-art performance on all three datasets, further validating the effectiveness of our approach.
引用
收藏
页码:7244 / 7258
页数:15
相关论文
共 50 条
  • [31] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [32] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [33] Temporal Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhuang T.
    Qin Z.
    Ding Y.
    Deng F.
    Chen L.
    Qin Z.
    Raymond Choo K.-K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1586 - 1598
  • [34] EchoGCN: An Echo Graph Convolutional Network for Skeleton-Based Action Recognition
    Qian, Weiwen
    Huang, Qian
    Li, Chang
    Chen, Zhongqi
    Mao, Yingchi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (245-261):
  • [35] Kernel Attention Based Multi-scale Adaptive Graph Convolutional Neural Network for Skeleton-Based
    Liu, Yanan
    Zhang, Hao
    Xu, Dan
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 96 - 103
  • [36] Pyramidal Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Liu, Zhongyu
    Huo, Yu
    Xu, Yonggang
    Hua, Gang
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 16183 - 16191
  • [37] Pose Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Shijie
    Yi, Jinhui
    Abu Farha, Yazan
    Gall, Juergen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 1028 - 1035
  • [38] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808
  • [39] Channel attention and multi-scale graph neural networks for skeleton-based action recognition
    Dang, Ronghao
    Liu, Chengju
    Liu, Ming
    Chen, Qijun
    AI COMMUNICATIONS, 2022, 35 (03) : 187 - 205
  • [40] Cross-Scale Spatial Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Chengyuan Ke
    Sheng Liu
    Zhenghao Ke
    Yuan Feng
    Shengyong Chen
    International Journal of Computational Intelligence Systems, 18 (1)