A generative model for fBm with deep ReLU neural networks

被引:0
|
作者
Allouche, Michaël [1 ]
Girard, Stéphane [2 ]
Gobet, Emmanuel [1 ]
机构
[1] CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau,91128, France
[2] Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble,38000, France
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [41] Reachability Analysis of Deep ReLU Neural Networks using Facet-Vertex Incidence
    Yang, Xiaodong
    Johnson, Taylor T.
    Hoang-Dung Tran
    Yamaguchi, Tomoya
    Hoxha, Bardh
    Prokhorov, Danil
    HSCC2021: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (PART OF CPS-IOT WEEK), 2021,
  • [42] Optimal function approximation with ReLU neural networks
    Liu, Bo
    Liang, Yi
    NEUROCOMPUTING, 2021, 435 : 216 - 227
  • [43] Locally linear attributes of ReLU neural networks
    Sattelberg, Ben
    Cavalieri, Renzo
    Kirby, Michael
    Peterson, Chris
    Beveridge, Ross
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [44] A multivariate Riesz basis of ReLU neural networks
    Schneider, Cornelia
    Vybiral, Jan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 68
  • [45] Rates of approximation by ReLU shallow neural networks
    Mao, Tong
    Zhou, Ding-Xuan
    JOURNAL OF COMPLEXITY, 2023, 79
  • [46] Approximation of compositional functions with ReLU neural networks
    Gong, Qi
    Kang, Wei
    Fahroo, Fariba
    SYSTEMS & CONTROL LETTERS, 2023, 175
  • [47] Error bounds for approximations with deep ReLU networks
    Yarotsky, Dmitry
    NEURAL NETWORKS, 2017, 94 : 103 - 114
  • [48] Prediction of Molecular Conformation Using Deep Generative Neural Networks
    Xu, Congsheng
    Lu, Yi
    Deng, Xiaomei
    Yu, Peiyuan
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (24) : 3684 - 3688
  • [49] Generative Models for Fashion Industry using Deep Neural Networks
    Lomov, Ildar
    Makarov, Ilya
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 2019,
  • [50] Algorithms that Get Old: The Case of Generative Deep Neural Networks
    Turinici, Gabriel
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT II, 2023, 13811 : 179 - 187