Quantile regression in uncertainty analysis of wind power forecasting

被引:0
|
作者
Yan, Jie [1 ]
Liu, Yongqian [1 ]
Han, Shuang [1 ]
Wang, Bo [2 ]
机构
[1] State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
[2] China Electric Power Research Institute, Beijing 100192, China
来源
Taiyangneng Xuebao/Acta Energiae Solaris Sinica | 2013年 / 34卷 / 12期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2101 / 2107
相关论文
共 50 条
  • [21] Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting
    Mokhtar Bozorg
    Antonio Bracale
    Pierluigi Caramia
    Guido Carpinelli
    Mauro Carpita
    Pasquale De Falco
    Protection and Control of Modern Power Systems, 2020, 5
  • [22] Wind power forecasting uncertainty and unit commitment
    Wang, J.
    Botterud, A.
    Bessa, R.
    Keko, H.
    Carvalho, L.
    Issicaba, D.
    Sumaili, J.
    Miranda, V.
    APPLIED ENERGY, 2011, 88 (11) : 4014 - 4023
  • [23] Volatility forecasting by quantile regression
    Huang, Alex YiHou
    APPLIED ECONOMICS, 2012, 44 (04) : 423 - 433
  • [24] Return Forecasting by Quantile Regression
    Pohlman, Lawrence
    Ma, Lingjie
    JOURNAL OF INVESTING, 2010, 19 (04): : 116 - 121
  • [25] Forecasting Uncertainty in Electricity Smart Meter Data by Boosting Additive Quantile Regression
    Ben Taieb, Souhaib
    Huser, Raphael
    Hyndman, Rob J.
    Genton, Marc G.
    IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (05) : 2448 - 2455
  • [26] Probability density forecasting of wind power based on multi-core parallel quantile regression neural network
    He, Yaoyao
    Zhang, Wanying
    KNOWLEDGE-BASED SYSTEMS, 2020, 209 (209)
  • [27] A multi-quantile regression time series model with interquantile lipschitz regularization for wind power probabilistic forecasting
    Ruas, Marcelo
    Street, Alexandre
    Fernandes, Cristiano
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 209
  • [28] A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization
    Hu, Jianming
    Tang, Jingwei
    Lin, Yingying
    RENEWABLE ENERGY, 2020, 149 (141-164) : 141 - 164
  • [29] On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power
    Gallego-Castillo, Cristobal
    Bessa, Ricardo
    Cavalcante, Laura
    Lopez-Garcia, Oscar
    ENERGY, 2016, 113 : 355 - 365
  • [30] Probabilistic wind power forecasts using local quantile regression
    Bremnes, JB
    WIND ENERGY, 2004, 7 (01) : 47 - 54