Numerical investigation of the influence of thermal runaway modelling on car park fire hazard and application to a Lithium-ion Manganese Oxide battery

被引:0
|
作者
Barre, Pierre-Alexandre [1 ]
Carlotti, Pierre [2 ]
Guibaud, Augustin [3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, Cent Supelec, Lab EM2C, 3 rue Joliot Curie, F-91192 Gif sur Yvette, France
[2] Artelia, 47 Ave Lugo, F-94600 Choisy Le Roi, France
[3] UCL, Dept Civil Environm & Geomat Engn, Gower St, London WC1E 6BT, England
[4] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
关键词
Numerical modelling; Electric vehicle; Fire; Infrastructure; Temperature; Heat flux; INDUCED FAILURE; DESIGN;
D O I
10.1016/j.firesaf.2024.104284
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This article presents numerical simulations of a Nissan LEAF 2011 electric car fire inside a concrete parking facility. Variations in the thermo-chemical properties of thermal runaway are analysed, and the way they affect the heat received by the concrete structure and a nearby parked vehicle is evaluated. Three key parameters are identified: the composition of the gas flowing through the pressure vent, the associated flow rate, and the peak heat release rate. These parameters are established independently, and the model is closed by adjusting the stoichiometry of the combustion reaction of the vented gas. Four simulations are conducted to capture the uncertainty. The net heat flux and surface temperature on the concrete and on a neighbouring parked car are monitored during each simulation. The study includes a sensitivity analysis of the impact of input variables on the net heat fluxes and surface temperatures, and investigations are carried out to understand the role of internal heat release. Variations in the gaseous mixture composition, heat release rate, and internal heat release have little impact on the resulting thermal conditions around the burning car because the combustion of the polymers in the passenger cabin drives the total heat release rate.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system
    Wang, Gongquan
    Gao, Wei
    He, Xu
    Peng, Rongqi
    Zhang, Yue
    Dai, Xinyi
    Ping, Ping
    Kong, Depeng
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [12] Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions
    Kong, Depeng
    Wang, Gongquan
    Ping, Ping
    Wen, Jenifer
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [13] Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility
    Held, Marcel
    Tuchschmid, Martin
    Zennegg, Markus
    Figi, Renato
    Schreiner, Claudia
    Mellert, Lars Derek
    Welte, Urs
    Kompatscher, Michael
    Hermann, Michael
    Nachef, Lea
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 165
  • [14] Experimental Investigation on Thermal Runaway Propagation in Lithium-Ion Battery Cell Stack
    Hoelle, Sebastian
    Haberl, Simon
    Rheinfeld, Alexander
    Osswald, Patrick
    Zimmermann, Sascha
    Hinrichsen, Olaf
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 1174 - 1179
  • [15] Investigation of thermal runaway characteristics of lithium-ion battery in confined space under the influence of ventilation and humidity
    Mei, Jie
    Shi, Guoqing
    Chen, Mingyi
    Li, Qing
    Liu, He
    Liu, Sun
    Wang, Di
    Cao, Jingao
    Zhang, Liwei
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [16] Thermal runaway caused fire and explosion of lithium ion battery
    Wang, Qingsong
    Ping, Ping
    Zhao, Xuejuan
    Chu, Guanquan
    Sun, Jinhua
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2012, 208 : 210 - 224
  • [17] Experimental study on the thermal runaway hazard quantification and its assessment parameters in the lithium-ion battery
    Hu, Xiangyu
    Zhu, Guoqing
    Liu, Tong
    Cui, Shaoqi
    Guo, Xianyang
    Chen, Xi
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [18] Numerical analysis of kinetic mechanisms for battery thermal runaway prediction in lithium-ion batteries
    Garcia, Antonio
    Monsalve-Serrano, Javier
    Lago Sari, Rafael
    Fogue Robles, Alvaro
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2022, 23 (10) : 1691 - 1707
  • [19] Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review
    Wang, Kuo
    Ouyang, Dongxu
    Qian, Xinming
    Yuan, Shuai
    Chang, Chongye
    Zhang, Jianqi
    Liu, Yifan
    ENERGIES, 2023, 16 (07)
  • [20] Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems
    Zhang, Xiong
    Yao, Jian
    Zhu, Linpei
    Wu, Jun
    Wei, Dan
    Wang, Qingquan
    Chen, Hu
    Li, Kaixiang
    Gao, Zhenyu
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 77