Numerical investigation of the influence of thermal runaway modelling on car park fire hazard and application to a Lithium-ion Manganese Oxide battery

被引:0
|
作者
Barre, Pierre-Alexandre [1 ]
Carlotti, Pierre [2 ]
Guibaud, Augustin [3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, Cent Supelec, Lab EM2C, 3 rue Joliot Curie, F-91192 Gif sur Yvette, France
[2] Artelia, 47 Ave Lugo, F-94600 Choisy Le Roi, France
[3] UCL, Dept Civil Environm & Geomat Engn, Gower St, London WC1E 6BT, England
[4] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
关键词
Numerical modelling; Electric vehicle; Fire; Infrastructure; Temperature; Heat flux; INDUCED FAILURE; DESIGN;
D O I
10.1016/j.firesaf.2024.104284
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This article presents numerical simulations of a Nissan LEAF 2011 electric car fire inside a concrete parking facility. Variations in the thermo-chemical properties of thermal runaway are analysed, and the way they affect the heat received by the concrete structure and a nearby parked vehicle is evaluated. Three key parameters are identified: the composition of the gas flowing through the pressure vent, the associated flow rate, and the peak heat release rate. These parameters are established independently, and the model is closed by adjusting the stoichiometry of the combustion reaction of the vented gas. Four simulations are conducted to capture the uncertainty. The net heat flux and surface temperature on the concrete and on a neighbouring parked car are monitored during each simulation. The study includes a sensitivity analysis of the impact of input variables on the net heat fluxes and surface temperatures, and investigations are carried out to understand the role of internal heat release. Variations in the gaseous mixture composition, heat release rate, and internal heat release have little impact on the resulting thermal conditions around the burning car because the combustion of the polymers in the passenger cabin drives the total heat release rate.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [2] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Chonglv Cheng
    Fanfu Kong
    Conghui Shan
    Baopeng Xu
    Fire Technology, 2023, 59 : 1073 - 1087
  • [3] Experimental investigation of explosion hazard from lithium-ion battery thermal runaway effluent gas
    Sauer, Nathaniel G.
    Gaudet, Benjamin
    Barowy, Adam
    FUEL, 2024, 378
  • [4] Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification
    Said, Mohamad Syazarudin Md
    Tohir, Mohd Zahirasri Mohd
    PROCESSES, 2019, 7 (10)
  • [5] Computational Modelling of Thermal Runaway Propagation in Lithium-Ion Battery Systems
    Citarella, Martina
    Suzzi, Daniele
    Brunnsteiner, Bernhard
    Schiffbaenker, Paul
    Maier, Gernot
    Schneider, Juergen
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE (ITEC-INDIA), 2019,
  • [6] Numerical investigation of suppressing thermal runaway propagation in a lithium-ion battery pack using thermal insulators
    Gong, Junhui
    Liu, Bo
    Lian, Haochen
    Liu, Jingyi
    Fu, Hui
    Miao, Yuxuan
    Liu, Jialong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 1063 - 1075
  • [7] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [8] Kinetic modelling of thermal decomposition in lithium-ion battery components during thermal runaway
    Sadeghi, Hosein
    Restuccia, Francesco
    JOURNAL OF POWER SOURCES, 2025, 629
  • [9] Theoretical and Numerical Analysis for Thermal Runaway Front Velocity of Lithium-ion Battery
    Zhang, Fangshu
    Feng, Xuning
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (12): : 3771 - 3776
  • [10] Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery
    Zhang Q.
    Liu T.
    Zhao Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (01): : 17 - 22