A GPU implementation of the inverse fast multipole method for multi-bistatic imaging applications

被引:1
|
作者
Tirado L.E. [1 ]
Ghazi G. [1 ]
Álvarez-Lopez Y. [2 ]
Las-Heras F. [2 ]
Martinez-Lorenzo J.Á. [1 ]
机构
[1] Department of Electrical Engineering, Northeastern University, Boston, 02115, MA
[2] Department of Electrical Engineering, Area of Signal Theory and Communications, University of Oviedo, Gijn, 33203, Asturias
来源
Martinez-Lorenzo, José Á. (jmartinez@coe.neu.edu) | 1600年 / Electromagnetics Academy卷 / 58期
关键词
29;
D O I
10.2528/PIERM17021004
中图分类号
学科分类号
摘要
This paper describes a parallel implementation of the Inverse Fast Multipole Method (IFMM) for multi-bistatic imaging configurations. NVIDIAs Compute Unified Device Architecture (CUDA) is used to parallelize and accelerate the imaging algorithm in a Graphics Processing Unit (GPU). The algorithm is validated with synthetic data generated by the Modified Equivalent Current Approximation (MECA) method and experimental data collected by a Frequency-Modulated Continuous Wave (FMCW) radar system operating in the 70–77 GHz frequency band. The presented results show that the IFMM implementation using the CUDA platform is effective at significantly reducing the algorithm computational time, providing a 300X speedup when compared to the single core OpenMP version of the algorithm. © 2017, Electromagnetics Academy. All rights reserved.
引用
下载
收藏
页码:159 / 169
页数:10
相关论文
共 50 条
  • [31] Parallel implementation of the steepest descent fast multipole method (SDFMM) on a beowulf cluster for subsurface sensing applications
    Jiang, D
    Meleis, W
    El-Shenawee, M
    Mizan, E
    Ashouei, A
    Rappaport, C
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (01) : 24 - 26
  • [32] Bistatic inverse synthetic aperture radar imaging method for maneuvering targets
    Sun Sibo
    Yuan Yeshu
    Jiang Yicheng
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [33] Multi-GPU implementation of the lattice Boltzmann method
    Obrecht, Christian
    Kuznik, Frederic
    Tourancheau, Bernard
    Roux, Jean-Jacques
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) : 252 - 261
  • [34] Hybrid GATE: A GPU/CPU implementation for imaging and therapy applications
    Bert, Julien
    Perez-Ponce, Hector
    Jan, Sebastien
    El Bitar, Ziad
    Gueth, Pierre
    CupJov, Vesna
    Chekatt, Hocine
    Benoit, Didier
    Sarrut, David
    Boursier, Yannick
    Brasse, David
    Buvat, Irene
    Morel, Christian
    Visvikis, Dimitris
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 2247 - 2250
  • [35] GPU-accelerated indirect boundary element method for voxel model analyses with fast multipole method
    Hamada, Shoji
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (05) : 1162 - 1168
  • [36] Massively parallel implementation of a fast multipole method for distributed memory machines
    Kurzak, J
    Pettitt, BM
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (07) : 870 - 881
  • [37] Multilevel fast multipole method implementation using parametric surface modeling
    Sertel, K
    Volakis, JL
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 1852 - 1855
  • [38] An Optimized GPU-Accelerated FDTD Method for Microwave Imaging using a Fast Nonlinear Inverse Scattering Algorithm
    Chen, Guanbo
    Stang, John
    Haynes, Mark
    Moghaddam, Mahta
    2014 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2014, : 251 - 251
  • [39] An Inverse Fast Multipole Method for Geometry Reconstruction Using Scattered Field Information
    Alvarez, Yuri
    Martinez-Lorenzo, Jose Angel
    Las-Heras, Fernando
    Rappaport, Carey M.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (07) : 3351 - 3360
  • [40] Fast Time-domain Imaging Method for Bistatic Circular SAR
    Xie, Hongtu
    Shi, Shaoying
    Mao, Junfa
    An, Daoxiang
    Li, Fuhai
    Zhou, Zhimin
    Wang, Guoqian
    2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2017), 2018, 960