A GPU implementation of the inverse fast multipole method for multi-bistatic imaging applications

被引:1
|
作者
Tirado L.E. [1 ]
Ghazi G. [1 ]
Álvarez-Lopez Y. [2 ]
Las-Heras F. [2 ]
Martinez-Lorenzo J.Á. [1 ]
机构
[1] Department of Electrical Engineering, Northeastern University, Boston, 02115, MA
[2] Department of Electrical Engineering, Area of Signal Theory and Communications, University of Oviedo, Gijn, 33203, Asturias
来源
Martinez-Lorenzo, José Á. (jmartinez@coe.neu.edu) | 1600年 / Electromagnetics Academy卷 / 58期
关键词
29;
D O I
10.2528/PIERM17021004
中图分类号
学科分类号
摘要
This paper describes a parallel implementation of the Inverse Fast Multipole Method (IFMM) for multi-bistatic imaging configurations. NVIDIAs Compute Unified Device Architecture (CUDA) is used to parallelize and accelerate the imaging algorithm in a Graphics Processing Unit (GPU). The algorithm is validated with synthetic data generated by the Modified Equivalent Current Approximation (MECA) method and experimental data collected by a Frequency-Modulated Continuous Wave (FMCW) radar system operating in the 70–77 GHz frequency band. The presented results show that the IFMM implementation using the CUDA platform is effective at significantly reducing the algorithm computational time, providing a 300X speedup when compared to the single core OpenMP version of the algorithm. © 2017, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:159 / 169
页数:10
相关论文
共 50 条
  • [1] A GPU Implementation of the Inverse Fast Multipole Method for Multi-Bistatic Imaging Applications
    Tirado, Luis E.
    Ghazi, Galia
    Martinez-Lorenzo, Jose A.
    Rappaport, Carey M.
    Alvarez, Yuri
    Las-Heras, Fernando
    [J]. 2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 874 - 875
  • [2] An Inverse Fast Multipole Method for Imaging Applications
    Alvarez, Yuri
    Martinez, Jose Angel
    Las-Heras, Fernando
    Rappaport, Carey M.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 : 1259 - 1262
  • [3] Inverse Fast Multipole Method for Monostatic Imaging Applications
    Alvarez, Yuri
    Laviada, Jaime
    Tirado, Luis
    Garcia, Cebrian
    Martinez, Jose Angel
    Las-Heras, Fernando
    Rappaport, Carey M.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (05) : 1239 - 1243
  • [4] Optimal sensor placement for Multi-bistatic ISAR imaging
    Martorella, M.
    Haywood, B.
    Nel, W.
    Gaffar, Y.
    Palmer, J.
    Bates, B.
    Giusti, E.
    Berizzi, F.
    [J]. 7TH EUROPEAN RADAR CONFERENCE, 2010, : 228 - 231
  • [5] An Experimental Study of Radar Tomographic Imaging in A Multi-Bistatic Scenario
    Hai-Tan Tran
    Heading, Emma
    Lo Monte, Lorenzo
    Alfaisali, Nihad
    [J]. 2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 419 - 424
  • [6] Multi-Bistatic Doppler Radar Tomography for Non-Cooperative Target Imaging
    Tran, Hai-Tan
    Heading, Emma
    Ng, Brian
    [J]. 2018 INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2018,
  • [7] CUDA-MPI Implementation of Fast Multipole Method on GPU Clusters for Dielectric Objects
    Nghia Tran
    Tuan Phan
    Kilic, Ozlem
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (02): : 224 - 227
  • [8] CUDA-MPI implementation of fast multipole method on GPU clusters for dielectric objects
    Tran, Nghia
    Phan, Tuan
    Kilic, Ozlem
    [J]. Applied Computational Electromagnetics Society Newsletter, 2018, 33 (02): : 224 - 227
  • [9] CUDA-MPI implementation of fast multipole method on GPU clusters for dielectric objects
    [J]. 2018, Applied Computational Electromagnetics Society (ACES) (33):
  • [10] The fast multipole method: Numerical implementation
    Darve, E
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (01) : 195 - 240